참고문헌
-
G. Di Blasio, K. Kunisch and E. Sinestrari,
$L^2$ -regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), 38-57. https://doi.org/10.1016/0022-247X(84)90200-2 -
J. M. Jeong, Retarded functional differential equations with
$L^1$ -valued controller, Funkcial. Ekvac. 36 (1993), 71-93. - K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim. 25 (1987), 715-722. https://doi.org/10.1137/0325040
- S. Nakagiri, Structural properties of functional differential equations in banach space, Osaka J. Math. 25 (1988), 353-398.
- J. M. Jeong, Y. C. Kwun and J. Y. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dynamics and Control Systems, 5 (1999), 329-346. https://doi.org/10.1023/A:1021714500075
- H. Tanabe, Functional analysis II, Jikko Suppan Publ. Co., Tokyo, 1981[in Japanese].
- H. Tanabe, Fundamental solution of differential equation with time delay in Banach space, Funkcial. Ekvac. 35 (1992), 149-177.
- K. Yosida, Functional Analysis, 3rd ed., Springer-Verlag Berlin Heidelberg New York, 1980.
- H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim. 21 (1983), 551-565. https://doi.org/10.1137/0321033
- H. X. Zhou, Controllability properties of linear and semilinear abstract control systems, SIAM J. Control Optim. 22 (1984), 405-422. https://doi.org/10.1137/0322026
- J. M. Jeong and H. H. Rho, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl. 321 (2006), 961-975. https://doi.org/10.1016/j.jmaa.2005.09.005