DOI QR코드

DOI QR Code

Quantitative evaluation of collapse hazard levels of tunnel faces by interlinked consideration of face mapping, design and construction data: focused on adaptive weights

막장관찰 및 설계/시공자료가 연계 고려된 터널막장 붕괴 위험도의 정량적 산정: 가변형 가중치 중심으로

  • Shin, Hyu-Soung (Geotechnical Engineering Research Division, Korea Institute of Construction technology) ;
  • Lee, Seung-Soo (Geotechnical Engineering Research Division, Korea Institute of Construction technology) ;
  • Kim, Kwang-Yeom (Geotechnical Engineering Research Division, Korea Institute of Construction technology) ;
  • Bae, Gyu-Jin (Geotechnical Engineering Research Division, Korea Institute of Construction technology)
  • 신휴성 (한국건설기술연구원 Geo-인프라연구실) ;
  • 이승수 (한국건설기술연구원 Geo-인프라연구실) ;
  • 김광염 (한국건설기술연구원 Geo-인프라연구실) ;
  • 배규진 (한국건설기술연구원 Geo-인프라연구실)
  • Received : 2013.09.10
  • Accepted : 2013.09.23
  • Published : 2013.09.30

Abstract

Previously, a new concept of indexing methodology has been proposed for quantitative assessment of tunnel collapse hazard level at each tunnel face with respect to the given geological data, design condition and the corresponding construction activity (Shin et al, 2009a). In this paper, 'linear' model, in which weights of influence factors are invariable, and 'non-linear' model, in which weights of influence factors are variable, are taken into account with some examples. Then, the 'non-linear' model is validated by using 100 tunnel collapse cases. It appears that 'non-linear' model allows us to have adapted weight values of influence factors to characteristics of given tunnel site. In order to make a better understanding and help for an effective use of the system, a series of operating processes of the system are built up. Then, by following the processes, the system is applied to a real-life tunnel project in very weak and varying ground conditions. Through this approach, it would be quite apparent that the tunnel collapse hazard indices are determined by well interlinked consideration of face mapping data as well as design/construction data. The calculated indices seem to be in good agreement with available electric resistivity distribution and design/construction status. In addition, This approach could enhance effective usage of face mapping data and lead timely and well corresponding field reactions to situation of weak tunnel faces.

기존 연구를 통하여 주어진 지반조건과 대응한 시공 상황에 대해 터널 굴진에 따른 매 막장의 붕괴 위험도를 정량적으로 지수화 할 수 있는 수단이 개발된 바 있다(Shin et al, 2009a). 본 논문에서는 기 제안된 터널 붕괴 위험도 지수(KTH-index)를 산정하는데 있어서 각 영향인자에 부여되는 가중치가 고정된 '선형' 모델과 주어진 영향인자의 입력값에 따라 가중치가 변화하는 '비선형' 모델을 소개하고, 100여개의 붕괴현장자료를 이용해 '비선형' 모델의 타당성을 검토하였다. 이를 통해 신개념의 '비선형' 가중치 모델은 위험도를 평가코자 하는 터널현장의 특성을 감안하여 가중치가 합리적으로 조정되어 위험도 평가를 수행할 수 있음을 보였다. 또한, 기 개발된 터널 시공 위험도 관리 시스템의 이해와 효과적인 활용을 돕기 위해 일련의 터널 시공 위험도 평가 체계를 수립하여 제시하였다. 본 시스템은 수립된 평가체계에 따라 개발 취약한 지반조건상에 있는 실제 도로터널 현장의 전 구간에 적용되어 그 현장 적용성을 검토하였다. 이를 통해 터널 막장의 지반조건과 함께 터널 붕괴 가능성에 영향을 미칠 설계 및 시공현황 정보와도 잘 연계 고려되어 붕괴 위험도가 평가됨을 보였으며, 산정된 위험도 지수 변화추이는 기존 전기 비저항 분포 특성과 설계자료 및 지보/보강 현황 등 현장 시공조건들의 변화추이와 잘 부합됨을 보였다. 또한, 본 시스템은 실시간으로 수집되는 막장관찰자료의 활용도를 극대화 시키고, 사전에 위험수준과 민감한 영향인자를 파악하여 적절한 현장대응을 유도할 수 있음을 보였다.

Keywords

References

  1. Bae, G.J., Shin, H.S. (2007), "Development of the KICT tunnel collapse hazard (KTH) index and evaluation chart", KSCE Journal, Vol. 20, No. 3C, pp. 221-227.
  2. Barton, N.R. (1978), "Suggested methods for the quantitative description of discontinuities in rock masses". ISRM Commission on Standardization of Laboratory and Field Tests. Int. J. Rock Mech. Min. Sic. & Geomech. Abstr., Vo. 15, pp. 319-368. https://doi.org/10.1016/0148-9062(78)91472-9
  3. Bieniawski, Z.T. (1989), "Engineering rock mass classifications", John & Sons, pp. 51-72
  4. Cancelli, A, Crosta, G. (1993), "Hazard and risk assessment in rockfall prone areasp: Chapter 15-Risk and reliability in ground engineering", Proceedings of the conference organized by the Institute of Civil Engineers(ICE), London, UK, pp. 177-190.
  5. Hudson, J.A. (1992), "Rock engineering systems: Theory and practice", Horwood, Chicester.
  6. KICT (2009), "Develpment of tecnologies for minimizing and preventing the disaster on tunnel construction (VI)", Final Technical Report, KICT 2009-071, Korea Institute of Construction Technology(KICT), p. 867.
  7. KTA (2010), "Case histories of tunnel collapse", CIR publication, Seoul, Korea, p. 417.
  8. Latham, J.P., Lu, P. (1999), "Development of an assessment system for the blastability of rock masses", Int. J. Rock Mech. Min. Sci., Vol. 36, pp. 41-55. https://doi.org/10.1016/S0148-9062(98)00175-2
  9. Shang, Y.J., Wang, S.J., Li, G.C., Yang, Z.F. (2000), "Retrospective case example using a comprehensive suitability index (CSI) for siting the Shisan-Ling power station in China". Int. J. Rock Mech. Min. Sci., Vol. 37, pp. 839-853. https://doi.org/10.1016/S1365-1609(00)00021-6
  10. Shin, H.S. (2001), "Neural network based material models for finite element analysis", Ph.D. thesis:C/Ph/250/01. Department of Civil Engineering, University of Wales Swansea.
  11. Shin, H., Kwon, Y., Jung, Y., Bae, G., Kim, Y.(2009a), "Methodology for quantitative hazard assessment for tunnel collapses based on case histories in Korea", International Journal of Rock Mechanics and Mining Science, Vol. 46, No. 5, pp. 1072-1087. https://doi.org/10.1016/j.ijrmms.2009.02.009
  12. Shin, H.S., Kwon, Y.C., Kim, D.G., Bae, G.J., Lee, H.G., Shin, Y.W. (2009b), "Quantitative hazard level simulation for tunnel design based on the KICT Tunnel Collapse Hazard index (KTHindex)", KTA journal, Vol. 11, No. 4, pp. 373-385.

Cited by

  1. A research framework for development of a LCCA based tunnel asset management system vol.16, pp.6, 2014, https://doi.org/10.9711/KTAJ.2014.16.6.615
  2. The Development of Subsidence Hazard Index for an Abandoned Mine Using Artificial Neural Network and Interaction Matrix vol.54, pp.5, 2017, https://doi.org/10.12972/ksmer.2017.54.5.480