DOI QR코드

DOI QR Code

이온화 방사선 조사에 의해 얻어진 저분자 laminarin의 분자구조 특성

Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation

  • Choi, Jong-Il (Department of Biotechnology and Bioengineering, Chonnam National University)
  • 투고 : 2013.07.17
  • 심사 : 2013.09.17
  • 발행 : 2013.12.01

초록

저분자량의 laminarin은 항산화능과 같은 생물학적 물성이 고분자량의 laminarin과 비교하여 증가하였다는 최근의 연구 결과들이 보고되었다. 이러한 저분자화에 따른 laminarin 생물활성의 증가 원인을 밝히고자 본 논문에서는 이온화 방사선 조사를 통하여 얻어진 저분자량 laminarin의 분자구조에 관한 연구를 수행하였다. 15 kDa 크기의 분자량을 갖는 laminarin을 이온화 방사선 조사를 이용하여 13.5, 8.5, 7, 6 kDa 크기의 저분자량 laminarin 시료들을 얻었다. 얻어진 저분자량 laminarin은 고분자량 laminarin에 비하여 낮은 polydispersity 값을 가졌다. 방사선 조사에 의한 저분자화에 따른 laminarin 기능기들의 변화를 확인하기 위하여 Fourier-transform infrared 분석을 수행한 결과, 분자량 감소에 따라서 대부분의 기능기들의 변화는 관찰되지 않았지만, carbonyl group의 증가가 확인되었다. Laminarin 입자의 scanning electron microscopy 분석으로부터 저분자량 laminarin에서 glycosidic 결합의 분해에 의한 입자 균열이 확인되었다. 이러한 결과들은 laminarin과 같은 다당류의 저분자화에 따른 기능성 변화 연구에 활용될 수 있을 것으로 기대된다.

Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.

키워드

참고문헌

  1. Srinvastava, R. and Kulshrestha, D. K., "Bioactive Polysaccharides from Plants," Phytochemistry, 28, 2877-2883(1989). https://doi.org/10.1016/0031-9422(89)80245-6
  2. Park, H. K., Kim, I. H., Kim, J. and Nam, T. J., "Induction of Apoptosis by Laminarin, Regulating the Insulin-like Growth Factorir Signaling Pathways in HT-29 Human Colon Cells," International Journal of Molecular Medicine, 30, 734-738(2012).
  3. Choi, J., Kim, H. J., Kim, J. H. and Lee, J. W., "Enhanced Biological Activities of Laminarin Degraded by Gamma-ray Irradiation," Journal of Food Biochemistry, 36, 465-469(2012). https://doi.org/10.1111/j.1745-4514.2011.00552.x
  4. Qi, H., Zhao, T., Zhang, Q., Li, Z., Zhao, Z. and Xing, R., "Antioxidant Activity of Different Molecular Weight Sulfated Polysaccharides from Ulva pertusa Kjellm (Chlorophyta)," J. Appl. Phycol., 17, 527-534(2005). https://doi.org/10.1007/s10811-005-9003-9
  5. Kim, K. H., Kim, Y. W., Kim, H. B., Lee, B. J. and Lee, D. S., "Anti-apoptotic Activity of Laminarin Polysaccharides and Their Enzymatically Hydrolyzed Oligosaccharides from Laminaria japonica", Biotechnol. Lett., 28, 439-446(2006). https://doi.org/10.1007/s10529-005-6177-9
  6. Miyanishi, N., Iwamoto, Y., Watanabe, E. and Oda, T., "Induction of TNF-$\alpha$ Production from Human Peripheral Blood Monocytes with $\beta $-1,3-glucan Oligomer Prepared from Laminarin with $\beta$-1,3-glucanase from Bacillus clausii NM-1," J. Biosci. Bioeng., 95, 192-195(2003). https://doi.org/10.1016/S1389-1723(03)80128-7
  7. Byun, E. H., Kim, J. H., Sung, N. Y., Choi, J. I., Lim, S. T., Kim, K. H., Yook, H. S., Byun, M. W. and Lee, J. W., "Effects of Gamma Irradiation on the Physical and Structural Properties of $\beta$-glucan," Radiat. Phys. Chem., 77, 781-786(2008). https://doi.org/10.1016/j.radphyschem.2007.12.008
  8. Yoshiga, A., Otaguro, H., Parra, D. F., Lima, L. F. C. P. and Lugao, A. B., "Controlled Degradation and Crosslinking of Polypropylene Induced by Gamma Radiation and Acetylene," Polym. Bull., 63, 397-409(2009). https://doi.org/10.1007/s00289-009-0102-7
  9. Choi, J. I., Lee, H. S., Kim, J. H., Lee, K. W., Lee, J. W., Seo, S. J., Kang, K. W. and Byun, M. W., "Controlling the Radiation Degradation of Carboxymethylcellulose Solution," Polym. Degrad. Stabil., 93, 310-315(2008). https://doi.org/10.1016/j.polymdegradstab.2007.10.014
  10. Choi, J., Kim, H. J., Kim, J. H., Byun, M. W., Chun, B. S., Ahn, D. H., Hwang, Y. J., Kim, D. J., Kim, G. H. and Lee, J. W., "Application of Gamma Irradiation for the Enhanced Physiological Properties of Polysaccharides from Seaweeds," Appl. Radiat. Isot., 67, 1277-1281(2009). https://doi.org/10.1016/j.apradiso.2009.02.027
  11. Choi, J., Kim, J. H., Lee, K. W., Song, B. S., Yoon, Y. H., Byun, M. W. and Lee, J. W., "Comparison of Gamma Ray and Electron Beam Irradiations on the Degradation of Carboxymethylcellulose," Korean J. Chem. Eng., 26, 1825-1828(2009). https://doi.org/10.1007/s11814-009-0279-3
  12. Pang, Z., Otaka, K., Maoka, T., Hidaka, K., Ishijima, S., Oda, M. and Ohnishi, M., "Structure of $\beta$-glucan Oligomer from Laminarin and Its Effect on Human Monocytes to Inhibit the Proliferation of U937 Cells," Biosci. Biotechnol. Biochem., 69, 553-558(2005). https://doi.org/10.1271/bbb.69.553
  13. Choi, J., Kim. H. J. and Lee, J. W., "Structural Feature and Antioxidant Activity of Low Molecular Weight Laminarin Degraded by Gamma Irradiation," Food Chem., 129, 520-523(2011). https://doi.org/10.1016/j.foodchem.2011.03.078
  14. Mathlouthi, M. and Koenig, J. L., "Vibrational Spectra of Carbohydrates," Adv. Carbohydr. Chem. Biochem., 44, 7-89(1986).
  15. Huang, L., Zhai, M., Peng, J., Li, J. and Wei, G., "Radiation-Induced Degradation of Carboxymethylated Chitosan in Aqueous Solution," Carbohydr. Polym., 67, 305-312(2007). https://doi.org/10.1016/j.carbpol.2006.05.023
  16. Sokhey, A. S. and Chinnaswamy, R., "Chemical and Molecular Properties of Irradiated Starch Extrudates," Cereal Chem., 70, 260-280(1993).

피인용 문헌

  1. NaOH를 이용한 우드칩의 당화 전처리에 대한 감마선 조사 영향 연구 vol.54, pp.3, 2013, https://doi.org/10.9713/kcer.2016.54.3.431