DOI QR코드

DOI QR Code

A Study on Formation of Vertically Aligned ZnO Nanorods Arrays on a Rough FTO Transparent Electrode by the Introduction of TiO2 Crystalline Nano-sol Blocking Interlayer

결정성 이산화티탄 나노졸 블록킹층 도입을 통한 거친 표면을 가지는 FTO 투명전극기판 위 수직 배향된 산화아연 나노막대 형성에 관한 연구

  • Heo, Jin Hyuck (Department of Chemical Engineering, Kyung Hee University) ;
  • You, Myung Sang (Department of Chemical Engineering, Kyung Hee University) ;
  • Im, Sang Hyuk (Department of Chemical Engineering, Kyung Hee University)
  • Received : 2013.10.03
  • Accepted : 2013.11.04
  • Published : 2013.12.01

Abstract

We synthesized the solution processible monodispersed $TiO_2$ crystalline nano-sol with ~ 5 nm in size by sol-gel method. Through the spin-coating of crystalline $TiO_2$ nano-sol at low processing temperature, we could make even blocking interlayer on the rough FTO transparent electrode substrate. The rough FTO surface could be gradually smoothed by the spin-coating of nano-crystalline $TiO_2$ sol based blocking interlayer. The 1, 2.5, 5, and 10 wt% of nanocrystalline $TiO_2$ sol formed 29, 38, 62, and 226 nm-thick of blocking interlayer in present experimental condition, respectively. The 5 and 10 wt% of $TiO_2$ nano-sol could effectively fill up the valley part of bare FTO with 48.7 nm of rms (root mean square) roughness and consequently enabled the ZnO to be grown to vertically aligned one dimensional nanorods on the flattened blocking interlayer/FTO substrate.

용액공정이 가능한 5 nm 정도의 입경을 가지는 이산화티탄 단분산 나노졸을 솔-젤법을 통하여 합성하였다. 결정성 이산화티탄 나노졸의 저온 스핀코팅 공정을 통하여, 거친 표면을 가지는 FTO 투명전극 기판에 블록킹층을 형성하였다. 이산화티탄 나노졸을 블록킹층에 코팅을 함으로써 거친 FTO 표면을 점진적으로 완만하게 할 수 있었다. 1, 2.5, 5, 및 10 중량%의 결정성 이산화티탄 나노 졸을 FTO 투명전극 기판에 스핀코팅하여 29, 38, 62 및 226 nm 두께의 이산화티탄 블록킹층을 형성할 수 있었다. 5 및 10 중량%의 결정성 이산화티탄 나노 졸의 경우 제곱평균 48.7 nm의 표면조도를 가지는 FTO의 투명전극 표면을 효과적으로 평탄화할 수 있었으며 이로 인해 1차원 형태의 산화아연 나노막대를 효과적으로 기판에 수직으로 배향할 수 있었다.

Keywords

References

  1. Yang, P., Yan, R. and Fardy, M., "Semiconductor Nanowire: What's Next?," Nano Lett., 10, 1529-1536(2010). https://doi.org/10.1021/nl100665r
  2. Hu, J., Odom, T. W. and Lieber, C. M., "Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes," Acc. Chem. Res., 32, 435-445(1999). https://doi.org/10.1021/ar9700365
  3. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H., "One-dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv. Mater., 15, 353-389(2003). https://doi.org/10.1002/adma.200390087
  4. Qu, J., Li, G. and Gao, X., "One-dimensional Hierarchical Titania for Fast Reaction Kinetics of Photoanode Materials of Dye-sensitized Solar Cells," Energy Environ. Sci., 3, 2003-2009(2010). https://doi.org/10.1039/c003646c
  5. Sreekumaraná Nair, A., "Electrospun $TiO_2$ Nanorods Assembly Sensitized by CdS Quantum Dots: A Low-cost Photovoltaic Material," Energy Environ. Sci., 3, 2010-2014(2010). https://doi.org/10.1039/c0ee00161a
  6. Lee, Y. H., Heo, J. H., Im, S. H., Kim, H.-j., Lim, C.-S., Ahn, T. K. and Seok, S. I., "Improvement of Nonlinear Response for The Power Conversion Efficiency with Light Intensities in Cobalt Complex Electrolyte System," Chem. Phys. Lett., 573, 63-69(2013). https://doi.org/10.1016/j.cplett.2013.04.047
  7. Yi, G.-C., Wang, C. and Park, W. I., "ZnO Nanorods: Synthesis, Characterization and Applications," Semicond. Sci. Technol., 20, S22(2005). https://doi.org/10.1088/0268-1242/20/4/003
  8. Wagner, R. and Ellis, W., "Vapor-liquid-solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 4, 89-90(1964). https://doi.org/10.1063/1.1753975
  9. Yamai, I. and Saito, H., "Vapor Phase Growth of Alumina Whiskers by Hydrolysis of Aluminum Fluoride," J. Cryst. Growth, 45, 511-516(1978). https://doi.org/10.1016/0022-0248(78)90485-2
  10. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P., "Nanowire Dye-sensitized Solar Cells," Nature Mater., 4, 455-459(2005). https://doi.org/10.1038/nmat1387
  11. Yodyingyong, S., Zhou, X., Zhang, Q., Triampo, D., Xi, J., Park, K., Limketkai, B. and Cao, G., "Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented $TiO_2$ Nanotubes," J. Phys. Chem. C, 114, 21851-21855(2010). https://doi.org/10.1021/jp1077888
  12. Breckenridge, R. G. and Hosler, W. R., "Electrical Properties of Titanium Dioxide Semiconductors," Phys. Rev., 91, 793-802(1953). https://doi.org/10.1103/PhysRev.91.793
  13. Forro, L., Chauvet, O., Emin, D., Zuppiroli, L., Berger, H. and Levy, F., "High Mobility n-type Charge Carriers in Large Single Crystals of Anatase ($TiO_2$)," J. Appl. Phys., 75, 633-635(1994). https://doi.org/10.1063/1.355801
  14. Duzhko, V., Timoshenko, V. Y., Koch, F. and Dittrich, T., "Pho-tovoltage in Nanocrystalline Porous $TiO_2$," Phys. Rev. B, 64, 075204 (2001). https://doi.org/10.1103/PhysRevB.64.075204
  15. Greene, L. E., Law, M., Yuhas, B. D. and Yang, P., "ZnO-$TiO_2$ Core-shell Nanorod/P3HT Solar Cells," J. Phys. Chem. C, 111, 18451-18456(2007). https://doi.org/10.1021/jp077593l
  16. Heo, J. H., Im, S. H., Kim, H.-J., Boix, P. P., Lee, S. J., Seok, S. I., Mora-Sero, I. and Bisquert, J., "Sb2S3-Sensitized Photoelectrochemical Cells: Open Circuit Voltage Enhancement through the Introduction of Poly-3-hexylthiophene Interlayer," J. Phys. Chem. C, 116, 20717-20721(2012). https://doi.org/10.1021/jp305150s
  17. Im, S. H., Kim, H.-J., Rhee, J. H., Lim, C.-S. and Seok, S. I., "Performance Improvement of Sb2S3-Sensitized Solar Cell by Introducing Hole Buffer Layer in Cobalt Complex Electrolyte," Energy Environ. Sci., 4, 2799-2802(2011). https://doi.org/10.1039/c0ee00741b
  18. Lim, C.-S., Im, S. H., Rhee, J. H., Lee, Y. H., Kim, H.-J., Maiti, N., Kang, Y., Chang, J. A., Nazeeruddin, M. K. and Grätzel, M., "Hole-conducting Mediator for Stable Sb2S3-sensitized Photoelectrochemical Solar Cells," J. Mater. Chem., 22, 1107-1111(2012). https://doi.org/10.1039/c1jm14584c
  19. Greene, L. E., Law, M., Tan, D. H., Montano, M., Goldberger, J., Somorjai, G. and Yang, P., "General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds," Nano Lett., 5, 1231-1236 (2005). https://doi.org/10.1021/nl050788p
  20. Im, S.-H., Lee, S.-H., Hong, Y.-J. and Choi, W.-Y., "Titania Sol, Method of Preparing The Same, and Coating Composition Comprsing The Same," WO Patent 2,007,073,043(2007).
  21. Chang, J. A., Rhee, J. H., Im, S. H., Lee, Y. H., Kim, H.-J., Seok, S. I., Nazeeruddin, M. K. and Gratzel, M., Nano Lett., 10, 2609(2010). https://doi.org/10.1021/nl101322h
  22. Im, S. H., Lim, C.-S., Chang, J. A., Lee, Y. H., Maiti, N., Kim, H.-J., Nazeeruddin, M. K., Gratzel, M. and Seok, S. I., Nano Lett., 11, 4789(2011). https://doi.org/10.1021/nl2026184
  23. Chang, J. A., Im, S. H., Lee, Y. H., Kim, H.-J., Lim, C.-S., Heo, J. H. and Seok, S. I., "Panchromatic Photon-harvesting by Holeconducting Materials in Inorganic-organic Heterojunction Sensitized-Solar Cell through The Formation of Nanostructured Electron Channels," Nano Lett., 12, 1863-1867(2012). https://doi.org/10.1021/nl204224v
  24. Kim, H., Jo, Y., Lee, K., Lee, I. and Tak, Y., "Fabrication of ZnO rod by Electrodeposition and Its Application to Dye Sensitized Solar Cell," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 162-166(2012). https://doi.org/10.9713/kcer.2012.50.1.162
  25. Chae, Y. K., Park, J. W., Mori, S. and Suzuki, M., "Photocatalytic Effects of Plasma-heated $TiO_2$-x Particles Under Visible Light Irradiation," Korean J. Chem. Eng., 30, 62-66(2013). https://doi.org/10.1007/s11814-012-0116-y
  26. Xion, L., Ahong, Q., Chen, Q. and Zhang, S., "$TiO_2$ Nanotubesupported $V_2O_5$ Catalyst for Selective NO Reduction by $NH_3$," Korean J. Chem. Eng., 30, 836-841(2013). https://doi.org/10.1007/s11814-013-0008-9

Cited by

  1. Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.597