References
- Bradley, P. S. and Mangasarian, O. L. (1998). Feature selection via concave minimization and support vector machines, Proceedings of the 13th International Conference on Machine Learning, 82-90
- Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression, Annals of Statistics, 32, 407-499. https://doi.org/10.1214/009053604000000067
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle prop-erties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan, J., Xue, L. and Zou, H. (2013). Strong oracle optimality of folded concave penalized estimation, Unpublished manuscript.
- Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer.
- Jung, K.-M. (2008). Robust statistical methods in variable selection, Journal of the Korean Data Analysis Society, 10, 3057-3066.
- Jung, K.-M. (2011). Weighted least absolute deviation lasso estimator, Communications of the Korean Statistical Society, 18, 733-739. https://doi.org/10.5351/CKSS.2011.18.6.733
- Jung, K.-M. (2012). Multiclass support vector machines with SCAD, Communications of the Korean Statistical Society, 19, 655-662. https://doi.org/10.5351/CKSS.2012.19.5.655
- Kim, Y., Choi, H. and Oh, H.-S. (2008). Smoothly clipped absolute deviation on high dimensions, Journal of American Statistical Association, 103, 1665-1673. https://doi.org/10.1198/016214508000001066
- Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory support vector machines, theory and appli-cations to the classification of microarray data and satellite radiance data, Journal of American Statistical Association, 99, 67-81. https://doi.org/10.1198/016214504000000098
-
Liu, Y. and Shen, X. (2006). Multicategory
$\psi$ -Learning, Journal of American Statistical Association, 101, 500-509. https://doi.org/10.1198/016214505000000781 - Park, C., Kim, K.-R., Myung, R. and Koo, J.-Y. (2012). Oracle properties of SCAD-penalized support vector machine, Journal of Statistical Planning and Inference, 142, 2257-2270. https://doi.org/10.1016/j.jspi.2012.03.002
- Tibshirani, R. J. (1996). Regression shrinkage and selection via the LASSO, Journal of the Royal Statistical Society, Series B, 58, 267-288.
- Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer.
- Wahba, G. (1998). Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV, In Advances in Kernel Methods: Support Vector Learning, eds. B. Scholkopf, C. J. C. Burges, and A. J. Smola, Cambridge, MA:MIT Press, 125-143.
- Weston, J. and Watkins, C. (1999). Support vector machines for multi-class pattern recognition, Proceedings of the Seventh European Symposium on Artificial Neural Networks.
- Wu, Y. and Liu, Y. (2007). Robust truncated-hinge-loss support vector machines. Journal of the American Statistical Association, 102, 974-983. https://doi.org/10.1198/016214507000000617
- Wu, Y. and Liu, Y. (2013). Adaptively weighted large margin classifiers. Journal of Computational and Graphical Statistics, 22, 416-432. https://doi.org/10.1080/10618600.2012.680866
- Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006). Gene selection using support vector machines with non-convex penalty, Bioinformatics, 22, 88-95. https://doi.org/10.1093/bioinformatics/bti736
- Zhu, J., Rosset, S., Hastie, T. and Tibshirani, R. (2003). 1-norm support vector machines, In Advances in Neural Information Processing Systems 16, eds, S. Thrun, L. Saul and B. Scholkopf, Cambridge, MA:MIT Press, 49-56.
- Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models (with discussion), The Annals of Statistics, 36, 1509-1566. https://doi.org/10.1214/009053607000000802
Cited by
- Support Vector Machines for Unbalanced Multicategory Classification vol.2015, 2015, https://doi.org/10.1155/2015/294985
- Penalized rank regression estimator with the smoothly clipped absolute deviation function vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.673