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Abstract
The surplus process in a risk model is stochastically analyzed. We obtain the characteristic function of the

level of the surplus at a finite time, by establishing and solving an integro-differential equation for the distribution
function of the surplus. The characteristic function of the stationary distribution of the surplus is also obtained by
assuming that an investment of the surplus is made to other business when the surplus reaches a sufficient level.
As a consequence, we obtain the first and second moments of the surplus both at a finite time and in an infinite
horizon (in the long-run).
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1. Introduction

In this paper, we consider a classical risk model in which the surplus at time t > 0 is given by

U(t) = u + ct −
N(t)∑
i=1

Yi,

where, u = U(0), c is the premium rate, N(t) is the number of claims by time t, and Yi is the amount
of the ith claim. {N(t), t > 0} is assumed to be a Poisson process of rate λ > 0 and Yi’s are assumed
to follow, independently and identically, distribution function G with mean µ > 0. The premium rate
c is usually assumed to be larger than λµ which is the expected total amount of claims per unit time.

This risk model has been studied by many authors by assuming that a ruin occurs when the surplus
becomes negative. They have obtained the ruin probability of the surplus and some related charac-
teristics of the risk model. The core result on the ruin probability is well summarized in Klugman et
al. (2004). The first passage time of the surplus to a certain level was introduced by Gerber (1990),
thereafter, Gerber and Shiu (1997) obtained the joint distribution of the time of ruin, the surplus im-
mediately before ruin and the deficit at ruin. Dickson and Willmot (2005) calculated the density of
the time to ruin by an inversion of its Laplace transform.

However, until now, most works have been concentrated on the ruin probability of the surplus
and its related characteristics. In this paper, we assume that the surplus process continues though it
becomes negative and analyze stochastically the level of the surplus in the risk model. In Section 2, we
derive the characteristic function of the level of the surplus at finite time t > 0, by establishing a partial

This research was supported by the Sookmyung Women’s University Research Grants 2012.
1 Corresponding author: Professor, Department of Statistics, Sookmyung Women’s University, Cheongpa-ro 47-gil 100,

Yongsan-Gu, Seoul 140-742, Korea. E-mail: eylee@sookmyung.ac.kr



476 Eon Young Cho, Seung Kyoung Choi, Eui Yong Lee

Figure 1: A sample path of the surplus process with investment

integro-differential equation for the distribution function of the surplus and solving the equation for
it. As a consequence, we obtain the first and second moments of the surplus at finite time t > 0.

Since the premium rate is larger than the loss rate λµ, the surplus process goes eventually to infinity
in the classical risk model. To analyze stochastically the level of the surplus in an infinite horizon, we
assume that an investment of the surplus to other business is made by an amount s (0 < s < V), if
the level of the surplus reaches a sufficient level V > u. This is a very practical assumption, since the
large stock of the surplus increases the opportunity cost. The concept of the investment of the surplus
was considered in Jeong et al. (2009) and Jeong and Lee (2010). They studied some optimal policies
related to managing the surplus in the risk model.

The surplus process in the risk model with investments is illustrated in Figure 1.
In Section 3, we obtain the characteristic function of the stationary distribution of the surplus in

the modified risk model by establishing and solving an ordinary integro-differential equation which
does not depend on time t. By differentiating the characteristic function, we obtain the first and second
moments of the surplus in the long-run (in an infinite horizon).

2. Transient Analysis of the Surplus

Let F(x, t) be the distribution function of U(t), the surplus at time t > 0, that is,

F(x, t) = P{U(t) ≤ x}, for −∞ < x < ∞.

Conditioning on whether a claim arrives in a small interval [t, t + ∆t], we can have the following
relations between U(t) and U(t + ∆t):

(i) If no claims arrive, then

U(t + ∆t) = U(t) + c∆t.

(ii) If a claim arrives, then

U(t + ∆t) = U(t) + c∆t − Y.

Hence, we can obtain the following equation for F(x, t):

F(x, t + ∆t) = [1 − λ∆t + o(∆t)] F(x − c∆t, t) + [λ∆t + o(∆t)] P{U(t) − Y ≤ x − c∆t} + o(∆t).
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Note that two or more claims arrive in a small interval [t, t + ∆t] is o(∆t).
Observe that conditioning on Y yields

P{U(t) − Y ≤ x − c∆t} =
∫ ∞

0
F(x − c∆ + y, t)dG(y)

and applying Taylor series expansion on F(x − c∆t, t) gives

F(x − c∆t, t) = F(x, t) − c∆t
∂

∂x
F(x, t) + o(∆t).

Inserting these two into the above equation, we have

F(x, t + ∆t) = F(x, t) − c∆t
∂

∂x
F(x, t) − λ∆tF(x, t) + λ∆t

∫ ∞

0
F(x − c∆t + y, t)dG(y) + o(∆t).

Subtracting F(x, t) from both sides of the equation, dividing by ∆t, and letting ∆t → 0, we have the
following integro-differential equation for F(x, t):

∂

∂t
F(x, t) = −c

∂

∂x
F(x, t) − λF(x, t) + λ

∫ ∞

0
F(x + y, t)dG(y). (2.1)

Let ϕ(r, t) =
∫ ∞
−∞ eirxdF(x, t) be the characteristic function of F(x, t). Multiplying both sides of

(2.1) by eirx and taking Stieltjes integral with respect to x give

∂

∂t
ϕ(r, t) = icrϕ(r, t) − λϕ(r, t) + λϕ(r, t)ϕY (r), (2.2)

where ϕY (r) =
∫ ∞

0 e−irydG(y). Solving (2.2) for ϕ(r, t) with initial condition ϕ(r, 0) = eiru, we, finally,
have

ϕ(r, t) = exp
{
i(ct + u)r − λt + λtϕY (r)

}
. (2.3)

Differentiating ϕ(r, t) with respect to r, we can obtain the moments of U(t). For examples,

E [U(t)] = u + (c − λµ)t,

E
[
U2(t)

]
=

[
(c − λµ)t

]2
+ λt

(
µ2 + σ2

)
,

where σ2 = Var(Y).

3. Stationary Analysis of the Surplus

In this section, after assuming that an investment of the surplus to other business is made by an amount
s (0 < s < V) , if the level of the surplus reaches a sufficient level V > u, we obtain the characteristic
function of the stationary distribution of the surplus.

Conditioning on whether a claim arrives in a small interval [t, t + ∆t] , we can have the following
relations between U(t) and U(t + ∆t) :

(i) If no claims arrive, then

U(t + ∆t) =
{

U(t) + c∆t, when U(t) ≤ V − c∆t,
V − s + c∆t, when V − c∆t < U(t) ≤ V.
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(ii) If a claim arrives, then

U(t + ∆t) = U(t) + c∆t − Y.

From these relations, we can obtain the following equation for x ≤ V :

P{U(t + ∆t) ≤ x} = [1 − λ∆t + o(∆t)] [P {U(t) ≤ x − c∆t,U(t) ≤ V − c∆t}
+P{V − s ≤ x − c∆t,V − c∆t < U(t) ≤ V}]
+ [λ∆t + o(∆t)] P [U(t) − Y ≤ x − c∆t] + o(∆t).

Let F(x, t) = P{U(t) ≤ x}, for x ≤ V . When V − s < x ≤ V , if ∆t is sufficiently small, the equation
becomes

F(x, t + ∆t) = [1 − λ∆t + o(∆t)] [F(x − c∆t, t) + F(V, t) − F(V − c∆t, t)]
+ [λ∆t + o(∆t)]P [U(t) − Y ≤ x − c∆t] + o(∆t).

Observe again that by conditioning on Y ,

P{U(t) − Y ≤ x − c∆t} =
∫ ∞

0
F(x − c∆t + y, t)dG(y)

and by the Taylor series expansion,

F(x − c∆t, t) = F(x, t) − c∆t
∂

∂x
F(x, t) + o(∆t).

Inserting these two into the above equation, subtracting F(x, t) from both sides of the equation,
dividing by ∆t, and letting ∆t → 0, we can derive the following integro-differential equation for
F(x, t):

∂

∂t
F(x, t) = −c

∂

∂x
F(x, t) − λF(x, t) + c f (V, t) + λ

∫ ∞

0
F(x + y, t)dG(y), (3.1)

where f (V, t) = (∂/∂x)F(x, t)|x=V .
Now, when x ≤ V − s, by an argument similar to the foregoing, we can obtain the integro-

differential equation for F(x, t) as follows:

∂

∂t
F(x, t) = −c

∂

∂x
F(x, t) − λF(x, t) + λ

∫ ∞

0
F(x + y, t)dG(y). (3.2)

Since F(x, t) = 1, for x ≥ V , the last term in (3.1) and (3.2) can be written as∫ ∞

0
F(x + y, t)dG(y) =

∫ V−x

0
F(x + y, t)dG(y) +G(V − x),

where G(y) = 1 −G(y). Inserting this into (3.1) and (3.2) and combining them together, we have the
following integro-differential equation for F(x, t) :

∂

∂t
F(x, t) = −c

∂

∂x
F(x, t) − λF(x, t) + c f (V, t)I{x>V−s} + λ

∫ V−s

0
F(x + y, t)dG(y) + λG(V − x), (3.3)
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where IA is the indicator of A.
Let F(x) be the stationary distribution function of U(t). Since (∂/∂t)F(x, t) = 0 in the stationary

case, F(x), now, satisfies

0 = −c
∂

∂x
F(x) − λF(x) + c f (V)I{x>V−s} + λ

∫ V−x

0
F(x + y)dG(y) + λG(V − x). (3.4)

Let ϕ(r) =
∫ V
−∞ eirxdF(x) be the characteristic function of F(x). Multiplying both sides of (3.4) by

eirx and taking Stieltjes integral with respect to x give

0 = −c
{
f (V)eirV − irϕ(r)

}
− λϕ(r) + c f (V)eir(V−s) + λϕ(r)ϕY (r), (3.5)

where ϕY (r) =
∫ ∞

0 e−irydG(y). To obtain (3.5), we make use of the following identities:∫ V

−∞
eirxdI{x>V−s} = eir(V−s)

and ∫ V

−∞
eirxd

[∫ V−x

0
F(x + y)dG(y)

]
=

∫ V

−∞

∫ V−x

0
eirx f (x + y)dG(y)dx −

∫ V

−∞
eirxdG(V − x)

=

∫ ∞

0

∫ V−y

−∞
eirx f (x + y)dxdG(y) −

∫ V

−∞
eirxdG(V − x) (by interchanging integral signs)

=

∫ ∞

0
e−iry

∫ V

−∞
eirz f (z)dzdG(y) −

∫ V

−∞
eirxdG(V − x) (by putting z = x + y)

= ϕ(r)ϕY (r) −
∫ V

−∞
eirxdG(V − x), since dG(V − x) = dG(V − x) with respect to x.

Solving (3.5) for ϕ(r), we have

ϕ(r) =
c f (V)

{
eirV − eir(V−s)

}
icr − λ + λϕY (r)

. (3.6)

Since ϕ(0) = 1, we can obtain f (V) by applying l’Hôpital’s rule to (3.6), which is given by f (V) =
(c − λµ)/(cs).

Observe that the points where the surplus reaches V form embedded regeneration points of the
surplus process. If we define a cycle as the period between two successive regeneration points, the
expected length of a cycle will be s/(c − λµ). Hence, we can obtain the same formula for f (V) by
applying the level crossing argument of Brill and Posner (1977), since the surplus reaches V once
during a cycle and the slope of the surplus process is c.

Differentiating ϕ(r) with respect to r, we can obtain the moments of U, the surplus in the long-run
(in an infinite horizon). For examples,

E[U] =
2V − s

2
− λµ2

2(c − λµ)
,

E
[
U2

]
=

(λµ2)2

2(c − λµ)2 −
(6V − 3s)λµ2 + 2λµ3

6(c − λµ)
+

(s2 − 3V s + 3V2)
3

,
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where µ = E(Y), µ2 = E(Y2) and µ3 = E(Y3).

References

Brill, P. H. and Posner, M. J. M. (1977). Level crossings in point processes applied to queue: Single-
sever case, Operations Research, 25, 662–674.

Dickson, D. C. M. and Willmot, G. E. (2005). The density of the time to ruin in the classical Poisson
risk model, Astin Bulletin, 35, 45–60.

Gerber, H. U. (1990). When does the surplus reach a given target?, Insurance: Mathematics and
Economics, 9, 115–119.

Gerber, H. U. and Shiu, E. S. W. (1997). The joint distribution of the time of ruin, the surplus
immediately before ruin and the deficit at ruin, Insurance: Mathematics and Economics, 21,
129–137.

Jeong, M. O. and Lee, E. Y. (2010). Optimal control of the surplus in an insurance policy, Journal of
the Korean Statistical Society, 39, 431–437.

Jeong, M. O., Lim, K. E. and Lee, E. Y. (2009). An optimization of a continuous time risk process,
Applied Mathematical Modelling, 33, 4062–4068.

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2004). Loss Models: From Data to Decisions, John
Wiley & Sons, Hoboken.

Received September 6, 2013; Revised October 30, 2013; Accepted October 30, 2013


