초록
A high thermal conductivity material, namely graphene is treated by planetary ball milling machine to transport the heat by increasing the temperature. Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of copper substrate with graphene. It is well known that the graphene is unable to disperse into base fluid without any treatment, which is due to the several reasons such as attachment of hydrophobic surface, agglomeration and impurity. To further improve the dispersibility and thermal characteristics, planetary ball milling approach is used to grind the raw samples at optimized condition. The results are examined by transmission electron microscopy, x-ray diffraction, Raman spectrometer, UV-spectrometer, thermal conductivity and thermal imager. Thermal conductivity measurements of structures are taken to support the explanation of heat transfer properties of different samples. As a result, it is found that the planetary ball milling approach is effective for improvement of both the dispersion and heat carriers of carbon based material. Indeed, the heat transfer of the ground graphene coated substrate was higher than that of the copper substrate with raw graphene.