DOI QR코드

DOI QR Code

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater

RO/NF/ED 연계 공정에 의한 고경도 담수 제조

  • Moon, Deok-Soo (Deep. Ocean Water Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Kwang Soo (Deep. Ocean Water Research Center, Korea Institute of Ocean Science & Technology) ;
  • Gi, Ho (Deep. Ocean Water Research Center, Korea Institute of Ocean Science & Technology) ;
  • Choi, Mi Yeon (Deep. Ocean Water Research Center, Korea Institute of Ocean Science & Technology) ;
  • Jung, Hyun Ji (Deep. Ocean Water Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Hyun Ju (Deep. Ocean Water Research Center, Korea Institute of Ocean Science & Technology)
  • 문덕수 (한국해양과학기술원 해양심층수연구센터) ;
  • 김광수 (한국해양과학기술원 해양심층수연구센터) ;
  • 지호 (한국해양과학기술원 해양심층수연구센터) ;
  • 최미연 (한국해양과학기술원 해양심층수연구센터) ;
  • 정현지 (한국해양과학기술원 해양심층수연구센터) ;
  • 김현주 (한국해양과학기술원 해양심층수연구센터)
  • Received : 2013.08.23
  • Accepted : 2013.11.18
  • Published : 2013.11.25

Abstract

The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.

본 연구의 목적은 해수담수화 과정 중 황산이온과 염소이온은 제거하고 유용미네랄인 마그네슘, 칼슘은 잔존 시키는 미네랄 수질 조정 기술로 먹는물 수질기준에 맞는 고경수 제조 공정 개발에 있다. 역삼투막(RO)에 통과시켜 농축수(Concentrated deep seawater)와 탈염수(desalted deep seawater)를 제조하고, 나노여과막(NF)를 사용하여 염화나트륨이 제거되지 않은 1차 미네랄 농축수(Mineral enriched deep seawater)를 제조하여, 전기투석 이온교환막(ED)을 가동하여 염화나트륨을 제거한 탈염 미네랄농축수(Mineral enriched desalted water)를 제조하여 이를 RO 탈염수와 희석하여 고경도 먹는해양심층수를 제조하였다. 역삼투막은 해수(해양심층수) 원수에서 용존물질과 담수를 분리할 수 있으며, 2차에 걸쳐 역삼투막을 사용하면, 용존성분 중 99.9% 이상 제거되고, 경도 1이하, 염소이온의 농도 2.3 mg/L인 용존물질이 완전히 제거된 탈염수(순수)를 제조할 수 있었다. 나노여과막 (NF 막)의 간극은 $10^{-9}$ m으로 마그네슘과 칼슘은 50%정도 통과시키며, 염소이온과 나트륨 같은 일가이온은 95%이상 통과한다. 나노여과막은 마그네슘과 칼슘과 같은 경도 성분과 나트륨과 염소이온과 같은 염분성분을 분리 농축할 수 있지만, 완벽하게 분리하지는 못한다. 전기투석막(ED)은 전기전도도에 따라 경도성분의 이가이온과 염분성분인 일가이온이 분리된다. 전기전도도 20 mS/cm 이상에서 경도성분(마그네슘이온, 칼슘 이온 등)은 제거되지 않는 반면, 염분성분 (나트륨이온, 염소이온 등)은 지속적으로 제거되었다. 따라서, 나노여과막을 이용하여 마그네슘과 칼슘과 같은 경도 성분을 농축하고, 전기투석막을 이용하여 경도농축수에서 염분성분을 분리하여 경도농도 12,600 mg/L, 염소이온 농도 2,446 mg/L의 염분성분이 배제된 고경도 농축수를 제조할 수 있었다. 이러한 고경도수를 역삼투막을 이용하여 용존물질이 모두 제거된 2차 RO 생산수로 10배 희석하면 염소이온 농도 244 mg/L 로 먹는물 수질기준에 적합하면서 경도농도 1,260 mg/L 인 고경도 수 제조도 가능하였다. RO/NF/ED 또는 NF/ED 연계공정은 해수의 증발 없이 역삼투막, 나노여과막과 전기투석막만을 이용하여 염소이온과 나트륨, 칼륨, 황산이온과 같은 염분성분을 제거하면서 마그네슘과 칼슘과 같은 경도성분은 농축할 수 있어서 먹는물 수질기준에 적합한 고경도수 제조가 가능하였으며, 이 과정 중 소모되는 에너지를 줄일 수 있었다.

Keywords

References

  1. Open University, 1989, Ocean chemistry and deep-sea sediments, Pergamon press, p.18-20.
  2. Land Transport and Maritime R&D Report, 2010, "The multipurpose development of deep ocean water of the East Sea" final report.
  3. Young Ho Kim, M.D., Sun Gun Lee, M.D., Shin Hye Kim, M.D., Yoon Ju Song, Ph.D., Ju Young Chung, M.D., Ph.D. and Mi Jung Park, M.D., Ph.D, 2011, Nutritional Status of Korean Toddlers: From the Korean National Health and Nutrition Examination Survey 2007-2009, Korean J Pediatr Gastroenterol Nutr. 2011 Jun; 14(2): 161-170. https://doi.org/10.5223/kjpgn.2011.14.2.161
  4. Korean Nutrition Society, 2000, Recommended dietary allowances for koreans, 7th Ed, ISBN-10 : 8987370011.
  5. Food and Nutrition Board. Dietary rdference intakes for calcium, phosphorus, magnesium, vitatmin D, and fluoride. Washington, DC: National Academy Press, 1997.
  6. Lee, S.-W., Moon, D.-S., Kim, C.-H., Kim, H.-J., 2010, Application and Development Strategy of Desalination System Using Deep Seawater, J. Kor. Soc. Mar. Eng., Vol. 34, No. 6. 773-779.
  7. Kim, C. H., 2000, Reverse osmosis desalination, Academy Publish, pp301.
  8. Moon, D.S., Jung, D.H., Kim, H.J. and Shin, P.G., 2005, Efficiency estimation for desalination system of seawater using reverse osmosis membrane, J. KOSMEE, Vol. 8, No. 2, 60-66.
  9. Kim, C.H., 2006, Desalination using deep ocean water, Korea water resources corp.
  10. Hong, Y.G., Song, K.H. and Moon, D.S., 2006, Desalination performance of deep ocean water using new mode reverse osmosis composite membrane, Korean fiber society, Vol. 43, No. 6, 291-297.
  11. Lenore S. C, Arnold E. G, Andrew D.E, 1998, Standard methods for the Examination of water and wastewater, 20th Ed., APHA, AWWA, WEF, Part2000, p.36-37.