DOI QR코드

DOI QR Code

그래핀의 모드 I 균열에 대한 분자동역학 해석으로부터 균열 선단 응집 법칙의 평가

Evaluation of Crack-tip Cohesive Laws for the Mode I Fracture of the Graphene from Molecular Dynamics Simulations

  • 김현규 (서울과학기술대학교 기계자동차공학과)
  • Kim, Hyun-Gyu (Department of Mechanical & Automotive Engineering, Seoul National University of Science and Technology)
  • 투고 : 2013.08.22
  • 심사 : 2013.10.22
  • 발행 : 2013.10.31

초록

본 논문은 그래핀의 모드 I 균열 진전에 대한 분자동역학 해석과 수치보조장을 사용하는 영역 투영 방법의 역문제 해석 방법을 결합하여 균열 선단 응집 법칙을 평가하는 효율적인 방법을 제시하고 있다. 그래핀의 균열 선단 응집 법칙을 결정하는 것은 균열 선단에서 멀리 떨어진 영역의 변위를 사용하여 균열 면에서 미지의 응집 트랙션과 열림 변위를 구하는 역문제를 해석해야 하는데 상호 J-적분과 M-적분의 경로 보존성과 효율적인 수치보조장을 사용하는 방법을 적용하였다. 분자동역학 해석에서 원자 변위를 유한요소 절점 변위로 이동최소자승법을 사용하여 근사하였으며 안정적인 역문제 해석을 통하여 원자 단위의 거동을 연속체 해석으로 연결시킬 수 있는 새로운 방법을 보여주었다.

In this paper, a novel approach to estimate cohesive laws for the mode I fracture of the graphene is presented by combining molecular dynamic simulations and an inverse algorithm based on field projection method and finite element method. The determination of crack-tip cohesive laws of the graphene based on continuum mechanics is a non-trivial inverse problem of finding unknown tractions and separations from atomic simulations. The displacements of molecular dynamic simulations in a region far away from the crack tip are transferred to finite element nodes by using moving least square approximation. Inverse analyses for extracting unknown cohesive tractions and separation behind the crack tip can be carried out by using conservation nature of the interaction J- and M-integrals with numerical auxiliary fields which are generated by systematically imposing uniform surface tractions element-by-element along the crack surfaces in finite element models. The preset method can be a very successful approach to extract crack-tip cohesive laws from molecular dynamic simulations as a scale bridging method.

키워드

참고문헌

  1. Camacho, G.T., Ortiz, M. (1996) Computational Modeling of Impact Damage in Brittle Materials, International Journal of Solids and Structures, 33, pp.2899-2938. https://doi.org/10.1016/0020-7683(95)00255-3
  2. Chew, H.B., Hong, S., Kim, K.S. (2009) Cohesive Zone Laws for Void Growth-II. Numerical Field Projection of Elasto-plastic Fracture Processes with Vapor Pressure, Journal of the Mechanics of Physics in Solids, 57, pp.1374-1390. https://doi.org/10.1016/j.jmps.2009.04.001
  3. Gain, A.L., Carroll, J., Paulino, G.H., Lambros, J. (2011) A Hybrid Experimental/Numerical Technique to Extract Cohesive Fracture Properties for Mode-I Fracture Of Quasi-brittle Materials, International Journal of Fracture, 169, pp.113-131. https://doi.org/10.1007/s10704-010-9578-2
  4. Hong, S., Kim, K.S. (2003) Extraction of Cohesivezone Laws from Elastic Far-fields of a Cohesive Crack Tip: a Field Projection Method, Journal of the Mechanics of Physics in Solids, 51, pp.1267-1286. https://doi.org/10.1016/S0022-5096(03)00023-1
  5. Kim, H.G., Chew, H.B., Kim, K.S. (2012) Inverse Extraction of Cohesive Zone Laws by Field Projection Method Using Numerical Auxiliary Fields, International Journal for Numerical Methods in Engineering, 91, pp.516-530. https://doi.org/10.1002/nme.4281
  6. Kim, H.G., Lee, K.W. (2009) A Study on the Influence of Measurement Location and Regularization on the Evaluation of Boundary Tractions by Inverse Finite Element Method, Finite Elements in Analysis and Design, 45, pp.569-582. https://doi.org/10.1016/j.finel.2009.03.006
  7. Lancaster, P., Salkauskas, K. (1981) Surfaces Generated by Moving Least Squares Methods. Mathematics of Computation, 37, pp.141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  8. Mergheim, J., Kuhl, E., Steinmann, P. (2005) A Finite Element Method for the Computational Modeling of Cohesive Cracks, International Journal for Numerical Methods in Engineering, 63, pp.276-289. https://doi.org/10.1002/nme.1286
  9. Moran, B., Shih, C.F. (1987) Crack Tip and Associated Domain Integrals from Momentum and Energy Balance, Engineering Fracture Mechanics, 27, pp.615-642. https://doi.org/10.1016/0013-7944(87)90155-X
  10. Oh, J.C., Kim, H.G. (2013) Inverse Estimation of Cohesive Zone Laws from Experimentally Measured Displacements for the Quasi-static Mode I Fracture of PMMA, Engineering Fracture Mechanics, 99, pp.118-131. https://doi.org/10.1016/j.engfracmech.2012.11.002
  11. Ortiz, M., Pandolfi, A. (1999) Finite-deformation Irreversible Cohesive Elements for Three-dimensional Crack-propagation Analysis, International Journal for Numerical Methods in Engineering, 44, pp.1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  12. Plimpton, S.J. (1995) Fast Parallel Algorithms for Short-range Molecular Dynamics, Journal of Computational Physics, 117, pp.1-9. https://doi.org/10.1006/jcph.1995.1039
  13. Que, N.S., Tin-Loi, F. (2002) Numerical Evaluation of Cohesive Fracture Parameters from a Wedge Splitting Test, Engineering Fracture Mechanics, 69, pp.1269-1286. https://doi.org/10.1016/S0013-7944(01)00131-X
  14. Reddy, R.D., Rajendran, S., Liew, K.M. (2006) Equilibrium Configuration and Continuum Elastic Properties of Finite Sized Graphene, Nanotechnology, 17, pp.864-870. https://doi.org/10.1088/0957-4484/17/3/042
  15. Scarpa, F., Adhikari, S., Phani, A.S. (2009) Effective Elastic Mechanical Properties of Single Layer Graphene Sheets, Nanotechnology, 20, pp.1-11.
  16. Shen, B., Paulino, G.H. (2011) Direct Extraction of Cohesive Fracture Properties from Digital Image Correlation: A Hybrid Inverse Technique, Experimental Mechanics, 51, pp.143-163. https://doi.org/10.1007/s11340-010-9342-6
  17. Xu, X.P., Needleman, A. (1994) Numerical Simulations of Fast Crack Growth in Brittle Solids, Journal of the Mechanics of Physics in Solids, 42, pp.1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5
  18. Zhao, H., Min, K., Aluru, N.R. (2009) Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons Under Uniaxial Tension, Nano Letters, 9, pp.3012-3015. https://doi.org/10.1021/nl901448z
  19. Zhu, Y., Liechti, K.M., Ravi-Chandar, K. (2009) Direct Extraction of Rate-dependent Tractionseparation Laws for Polyurea/Steel Interfaces, International Journal of Solids and Structures, 46, pp.31-51. https://doi.org/10.1016/j.ijsolstr.2008.08.019