References
- Pietrzik, C. and C. Behl (2005) Concepts for the treatment of Alzheimer's disease: Molecular mechanisms and clinical application. Int. J. Exp. Pathol. 86: 173-185. https://doi.org/10.1111/j.0959-9673.2005.00435.x
- Silverberg, G. D., M. Mayo, T. Saul, J. Carvalho, and D. McGuire (2004) Novel ventriculo-peritoneal shunt in Alzheimer's disease cerebrospinal fluid biomarkers. Expert Rev. Neurother. 4: 97-107. https://doi.org/10.1586/14737175.4.1.97
- Barril, X., M. Orozco, and F. J. Luque (2001) Towards improved acetylcholinesterase inhibitors: A structural and computational approach. Mini Rev. Med. Chem. 1: 255-266. https://doi.org/10.2174/1389557013406828
- Gong, Y., L. Chang, K. L. Viola, P. N. Lacor, M. P. Lambert, C. E. Finch, G. A. Krafft, and W. L. Klein (2003) Alzheimer's disease-affected brain: Presence of oligomeric A-beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. USA. 100: 10417-10422. https://doi.org/10.1073/pnas.1834302100
- Yankner, B. A., L. K. Duffy, and D. A. Kirschner (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: Reversal by tachykinin neuropeptides. Science 250: 279-282. https://doi.org/10.1126/science.2218531
- Mattson, M. P., B. Cheng, D. Davis, K. Bryant, I. Lieberburg, and R. E. Rydel (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12: 376-389.
- Pike, C. J., D. Burdick, A. J. Walencewicz, C. G. Glabe, and D. W. Cotman (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. J. Neurosci. 13: 1676-1687.
- Takashima, A., K. Noguchi, K. Sato, T. Hoshino, and K. Imahori (1993) Tau protein kinase I is essential for amyloid beta-proteininduced neurotoxicity. Proc. Natl. Acad. Sci. USA. 90: 7789-7793. https://doi.org/10.1073/pnas.90.16.7789
- Behl, C., J. B. Davis, R. Lesley, and D. Schubert (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817-827. https://doi.org/10.1016/0092-8674(94)90131-7
- Shearman, M. S., C. I. Ragan, and L. L. Iversen (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid- mediated cell death. Proc. Natl. Acad. Sci. USA. 91: 1470-1474. https://doi.org/10.1073/pnas.91.4.1470
- Frautschy, S. A., A. Baird, and G. M. Cole (1991) Effects of injected Alzheimer beta-amyes in rat brain. Proc. Natl. Acad. Sci. USA. 88: 8362-8366. https://doi.org/10.1073/pnas.88.19.8362
- Kowall, N. W., M. F. Beal, J. Busciglio, L. K. Duffy, and B. A. Yankner (1991) An in vivo model for the neurodegenerative effects of beta-amyloid and protection by substance P. Proc. Natl. Acad. Sci. USA. 88: 7247-7251. https://doi.org/10.1073/pnas.88.16.7247
- Selkoe, D. J. (2001) Alzheimer's disease: Genes, proteins, and therapy. Physiol. Rev. 81: 741-766.
- Mattson, M. P. (2004) Pathways towards and away from Alzheimer's disease. Nature 430: 631-639. https://doi.org/10.1038/nature02621
- Reddy, P. H. and M. F. Beal (2005) Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain. Res. Brain. Res. Rev. 49: 618-632. https://doi.org/10.1016/j.brainresrev.2005.03.004
- Reddy, P. H. and S. Weeney (2006) Mapping cellular transcriptosomes in autopsied Alzheimer's disease subjects and relevant animal models. Neurobiol. Aging 27: 1060-1077. https://doi.org/10.1016/j.neurobiolaging.2005.04.014
- Tanzi, R. E. and L. Bertram (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: A genetic perspective. Cell 120: 545-555. https://doi.org/10.1016/j.cell.2005.02.008
- Skaper, S. D. (2012) Alzheimer's disease and amyloid: Culprit or coincidence? Int. Rev. Neurobiol. 102: 277-316. https://doi.org/10.1016/B978-0-12-386986-9.00011-9
- Rubio-Perez, J. M. and J. M. Morillas-Ruiz (2012) A review: Inflammatory process in Alzheimer's disease, role of cytokines. Scientific World J. 2012: 756357.
- Selkoe, D. J. (2005) Defining molecular targets to prevent Alzheimer disease. Arch Neurol. 62: 192-195. https://doi.org/10.1001/archneur.62.2.192
- Selkoe, D. J. (2003) Folding proteins in fatal ways. Nature 426: 900-904. https://doi.org/10.1038/nature02264
- Rich, J. B., D. X. Rasmusson, M. F. Folstein, K. A. Carson, C. Kawas, and J. Brandt (1995) Nonsteroidal anti-inflammatory drugs in Alzheimer's disease. Neurology 45: 51-55. https://doi.org/10.1212/WNL.45.1.51
- Wei, X., Y. Zhang, and J. Zhou (1999) Alzheimer's disease-related gene expression in the brain of senescence accelerated mouse. Neurosci. Lett. 268: 139-142. https://doi.org/10.1016/S0304-3940(99)00396-1
- Hu, J., K. T. Akama, G. A. Krafft, B. A. Chromy, and L. J. Van Eldik (1998) Amyloid-beta peptide activates cultured astrocytes: Morphological alterations, cytokine induction and nitric oxide release. Brain. Res. 785: 195-206. https://doi.org/10.1016/S0006-8993(97)01318-8
- Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: Application of proliferation and cytotoxicity assays. J. Immunol. Methods. 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Ding, A. H., C. F. Nathan, and D. J. Stuehr (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407-2414.
- Barron, K. D. (1995) The microglial cell. A historical review. J. Neurol. Sci. 134: 57-68.
- Boje, K. M. and P. K. Arora (1992) Microglial-produced nitric oxide and reactive nitrogen oxide mediate neuronal cell death. Brain Res. 587: 250-256. https://doi.org/10.1016/0006-8993(92)91004-X
- Dawson, T. M., J. Zhang, V. L. Dawson, and S. H. Snyder (1994) Nitric oxide: Cellular regulation and neuronal injury. Prog. Brain Res. 103: 365-369. https://doi.org/10.1016/S0079-6123(08)61150-4
- Kleinert, H., P. M. Schwarz, and U. Frstermann (2003) Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 384: 1343-1364.
- Satoh, J., L. F. Kastrukoff, and S. U. Kim (1991) Cytokine-induced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured human oligodendrocytesand astrocytes. J. Neuropathol. Exp. Neurol. 50: 215-216. https://doi.org/10.1097/00005072-199105000-00004
- Ballestas, M. E. and E. N. Benveniste. (1995) Interlukin 1-beta and tumor necrosis factor-alpha-mediated regulation of ICAM-1 gene expression in astrocytes requires protein kinase C activity. Glia 14: 267-278. https://doi.org/10.1002/glia.440140404
- Buizza, L., C. Prandelli, S. A. Bonini, A. Delbarba, G. Cenini, C. Lanni, E. Buoso, M. Racchi, S. Govoni, M. Memo, and D. Uberti (2013) Conformational altered p53 affects neuronal function: Relevance for the response to toxic insult and growth-associated protein 43 expression. Cell Death Dis. 4: e484. https://doi.org/10.1038/cddis.2013.13
-
Gorgoulis, V. G., P. Zacharatos, A. Kotsinas, D. Kletsas, G. Mariatos, V. Zoumpourlis, K. M. Ryan, C. Kittas, and A. G. Papavassiliou (2003) p53 activates ICAM-1 (CD54) expression in an
$NF{\kappa}B$ -independent manner. EMBO J. 22:1567-1578. https://doi.org/10.1093/emboj/cdg157 - Gorgoulis, V. G., H. Pratsinis, P. Zacharatos, C. Demoliou, F. Sigala, P. J. Asimacopoulos, A. G. Papavassiliou, and D. Kletsas (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab. Invest. 85:502-511. https://doi.org/10.1038/labinvest.3700241