DOI QR코드

DOI QR Code

폴리카보네이트와의 레이저 투과 용접성 개선을 위한 폴리프로필렌 개질

Modification of Polypropylene for Improving the Laser Transmission Weldability to Polycarbonate

  • 김대진 (경북대학교 산학협력선도대학사업단) ;
  • 전일련 (경일대학교 화학공학과) ;
  • 박해윤 (경북대학교 고분자공학과) ;
  • 서관호 (경북대학교 고분자공학과)
  • Kim, Dae-Jin (Agency of LINC, Kyungpook National University) ;
  • Jeon, Il-Ryeon (Department of Chemical Engineering, Kyungil University) ;
  • Park, Hae-Youn (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Seo, Kwan-Ho (Department of Polymer Science and Engineering, Kyungpook National University)
  • 투고 : 2013.07.10
  • 심사 : 2013.08.29
  • 발행 : 2013.11.25

초록

동종 혹은 이종의 고분자를 레이저로 접착시키는 방법은 레이저 접착이 가지는 장점들로 인해 많은 산업분야에서 광범위하게 사용되고 있다. 산업적으로 많이 사용되는 폴리프로필렌(PP)과 폴리카보네이트(PC)가 레이저 투과용접이 가능하다면 자동차 헤드램프에 큰 이점을 갖고 적용할 수 있을 것이다. 하지만, 폴리프로필렌과 폴리카보네이트는 상용성이 낮아 레이저 접착을 시켜도 강도가 낮은 문제점이 있다. 본 연구에서는 반응압출을 통해 폴리프로필렌을 글리시딜메타크릴레이트(GMA)로 개질하고, 폴리카보네이트와의 상용성, 기계적 물성 및 레이저 투과 용접을 통해 접착성을 조사하였다.

Laser transmission welding of polymers is now used in a very wide range of industries due to its advantages. If the joining between polypropylene (PP) and polycarbonate (PC) occurs by laser transmission welding, the automotive headlight will get a large profit. However, PP/PC have poor miscibility. In the laser transmission welding results, the adhesion strength between PP and PC was very weak. In this study, PP was modified by grafting of glycidyl methacrylate (GMA). The adhesion strength of PC and PP-g-GMA as a reactive compatibilizer was observed. The adhesion strength was investigated by compatibility with PC, mechanical properties and laser transmission welding.

키워드

참고문헌

  1. I. Jones, Assembly Autom., 22, 129 (2002). https://doi.org/10.1108/01445150210697429
  2. H. Potente, O. Karger, and G. Fiegler, Macromol. Mater. Eng., 284, 734 (2002).
  3. K. Mistry, Assembly Autom., 17, 196 (1997). https://doi.org/10.1108/01445159710172210
  4. B. Rooks, Industrial Robot, 31, 338 (2004). https://doi.org/10.1108/01439910410541837
  5. A. Boglea, A. Olowinsky, and A. Gillner, Appl. Surface Sci., 254, 1174 (2007). https://doi.org/10.1016/j.apsusc.2007.08.013
  6. M. Speka, S. Mattei, M. Pilloz, and M. Ilie, NDT&E Int., 41, 178 (2008). https://doi.org/10.1016/j.ndteint.2007.10.005
  7. Y. Kurosaki, J. Quant. Spectrosc. Radiat. Transfer., 93, 25 (2005). https://doi.org/10.1016/j.jqsrt.2004.07.034
  8. M. Ilie, J. C. Kneip, S. Mattei, A. Nichici, C. Roze, and T. Girasole, Infrared Phys. Techn., 51, 73 (2007). https://doi.org/10.1016/j.infrared.2007.02.003
  9. BASF, Plastics Additives & Compounding, 7, 34 (2005).
  10. D. Grewell, A. Benatar, and J. B. Park, "Ultrasonic Welding", in Plastics & Composites Welding Handbook, Hanser Publications, Cincinnati, 2003.
  11. I. Froment, "Linear and Orbital Vibration Welding", in Plastics & Composites Welding Handbook, Hanser Publications, Cincinnati, 2003.
  12. Y. Zhihui, Z. Yajie, Z. Xiaomin, and Y. Jinghua, Polymer, 39, 547 (1998). https://doi.org/10.1016/S0032-3861(97)00299-1
  13. S. Dai and L. Ye, Polym. Adv. Technol., 19, 1069 (2008). https://doi.org/10.1002/pat.1080
  14. R. A. Torres, J. Arellano-Ceja, M. E. Hernandez-Hernandez, and R. Gonzalez-Nunez, Polym. Bulletin, 59, 251 (2007). https://doi.org/10.1007/s00289-007-0757-x
  15. S. S. Pesetskii and O. A. Makarenko, Russian J. Appl. Chem., 75, 629 (2002). https://doi.org/10.1023/A:1019529400627
  16. X. Zhang, Z. Yin, L. Li, and J. Yin, J. Appl. Polym. Sci., 61, 2253 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2253::AID-APP2>3.0.CO;2-B
  17. H. T. Chiu and W. M. Chiu, J. Appl. Polym. Sci., 68, 977 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980509)68:6<977::AID-APP11>3.0.CO;2-L
  18. S. Al-Malaika and W. Kong, J. Appl. Polym. Sci., 79, 1401 (2001). https://doi.org/10.1002/1097-4628(20010222)79:8<1401::AID-APP70>3.0.CO;2-4
  19. M. Sclavons, V. Carlier, B. De Roover, P. Franquinet, J. Devaux, and R. Legras, J. Appl. Polym. Sci., 62, 1205 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1205::AID-APP10>3.0.CO;2-6
  20. Z. Xiaomin, Y. Zhihui, N. Tainhain, and Y. Jinghua, Polymer, 38, 5905 (1997). https://doi.org/10.1016/S0032-3861(97)00172-9
  21. N. Renaut, S. Duquesne, S. Zanardi, P. Bardollet, C. Steil, and R. Delobel, J. Macromol. Sci., 42, 977 (2005). https://doi.org/10.1081/MA-200065829
  22. B. Wong and W. E. Baker, Polymer, 38, 2781 (1997). https://doi.org/10.1016/S0032-3861(97)85615-7
  23. H. Cartier and G. H. Hu, J. Polym. Sci., 36, 2763 (1998). https://doi.org/10.1002/(SICI)1099-0518(19981115)36:15<2763::AID-POLA13>3.0.CO;2-Y
  24. M. Pracella and D. Chionna, Macromol. Symp., 198, 161 (2003).
  25. M. Eroglu, Int. J. Sci. Tech., 2, 63 (2007).
  26. W. Ho and R. Salovey, Polym. Eng. Sci., 21, 839 (1981). https://doi.org/10.1002/pen.760211306
  27. R. G. Raj, B. V. Kokta, and C. Daneault, Int. J. Polym. Mater., 14, 223 (1990). https://doi.org/10.1080/00914039008031515
  28. D. M. Bigg, Polym. Compos., 8, 115 (1987). https://doi.org/10.1002/pc.750080208
  29. B. Rotzinger, Polym. Degrad. Stabil., 91, 2884 (2006). https://doi.org/10.1016/j.polymdegradstab.2006.09.008
  30. The Japan Society for Technology of Plasticity, Technology of Plasticity, Sungandang Seoul, 1998.
  31. D. W. van Krevelen, Properties of Polymers, Elsevier, Amsterdam, 1990.

피인용 문헌

  1. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment vol.11, pp.1, 2017, https://doi.org/10.3390/ma11010029
  2. State-Of-The-Art and Trends in CO 2 Laser Cutting of Polymeric Materials—A Review vol.13, pp.17, 2013, https://doi.org/10.3390/ma13173839