DOI QR코드

DOI QR Code

디페닐렌비닐렌 치환기를 가진 카바졸계 청색발광 공중합체 합성

Synthesis of Novel Carbazole-based Blue Light-emitting Copolymers Containing (Diphenylene)vinylene Pendants

  • 김우연 (경북대학교 고분자공학과) ;
  • 윤근병 (경북대학교 고분자공학과)
  • Kim, Woo Yeon (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Yoon, Keun-Byoung (Department of Polymer Science and Engineering, Kyungpook National University)
  • 투고 : 2013.07.08
  • 심사 : 2013.09.08
  • 발행 : 2013.11.25

초록

공액구조 고분자의 밴드갭을 줄이기 위하여 청색의 디페닐렌비닐렌을 치환기를 갖는 카바졸 단량체와 용해도 향상을 위해 옥틸기를 도입한 카바졸 공단량체를 합성하여 신규 공중합체를 제조하였다. Suzuki 커플링 중합으로 공중합체를 제조하고, 공중합체의 열적, 분광학적, 전기광학적 특성을 조사하여 고분자 유기발광 다이오드(PLED)의 발광층에의 사용가능성을 조사하였다. 용액상태에서 공중합체의 UV 최대 흡수 파장은 333~340 nm, PL 최대방출 파장은 409~464 nm를 보였으며, 상대양자효율은 최대 25.8%의 값을 보였다. 열중량분석 결과 $350^{\circ}C$까지 열안정성을 보이고, 필름형성이 용이하였으며, 공중합체를 발광층으로 사용한 PLED 소자에서 4.0 V에서 청색광을 나타내었다.

Novel carbazole based copolymers were synthesized by Suzuki coupling polymerization. (Diphenylene)vinylene and n-octyl was introduced to carbazole as pendants for reducing band gap and improving solubility, respectively. Thermal, photoluminescence and electro-luminescence of copolymers were studied for applying the emitting layer of polymer light emitting diode (PLED). Maximum UV-vis absorption and photoluminescence (PL) emission wavelength of copolymers showed 333~340 nm and 409~464 nm in solution state, respectively. The relative quantum yield using 9,10-diphenylanthracene as a reference was 25.8%. These copolymers exhibited high thermal stability ($T_d$ = $350^{\circ}C$) and good film forming ability. Good luminance was obtained at voltages lower than 8 V and the onset voltage was observed at 4.0 V.

키워드

참고문헌

  1. Y. Xu, J. Peng, Y. Mo, Q. Hou, and Y. Cao, Appl. Phys. Lett., 86, 163502 (2005). https://doi.org/10.1063/1.1901824
  2. Y. Xu, J. Peng, J. Jiaxing, W. Xu, W. Yang, and Y. Cao, Appl. Phys. Lett., 87, 193502 (2005). https://doi.org/10.1063/1.2119407
  3. M. Pope, H. P. Kallmann, and P. Magnate, J. Chem. Phys., 38, 2042 (1963). https://doi.org/10.1063/1.1733929
  4. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987). https://doi.org/10.1063/1.98799
  5. D. R. Baigent, N. C. Greenham, J. Gruener, R. N. Marks, R. H. Friend, S. C. Moratti, and A. B. Holmes, Synth. Metal., 67, 3 (1994). https://doi.org/10.1016/0379-6779(94)90004-3
  6. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 57, 531 (1987).
  7. V. A. Montes, G. Li, R. Pohl, J. Shinar, and P. Anzenbacher, Adv. Mater., 16, 2001 (2004). https://doi.org/10.1002/adma.200401155
  8. C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater., 16, 61 (2004). https://doi.org/10.1002/adma.200305619
  9. A. P. Kulkarni, A. P. Gifford, C. J. Tonzola, and S. A. Jenekhe, Appl. Phys. Lett., 86, 061106 (2005). https://doi.org/10.1063/1.1855415
  10. Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett., 86, 071104 (2005). https://doi.org/10.1063/1.1862777
  11. B. J. Chen, X. W. Sun, B. K. Tay, and S. J. Chua, Appl. Phys. Lett., 86, 063506 (2005). https://doi.org/10.1063/1.1796527
  12. J. H. Lee, C. I. Wu, and S. W. Liu, Appl. Phys. Lett., 86, 103506 (2005). https://doi.org/10.1063/1.1879093
  13. C. T. Chen, Chem. Mater., 16, 4389 (2004). https://doi.org/10.1021/cm049679m
  14. M. S. Liu, J. Luo, and A. K. Y. Jen, Chem. Mater., 15, 3496 (2003). https://doi.org/10.1021/cm030063r
  15. H. Lu, C. Liu, C. Chang, and S Chen, Adv. Mater., 19, 2574 (2007). https://doi.org/10.1002/adma.200602632
  16. K. L. Chan, M. J. McKiernan, C. R. Towns, and A. B. Holmes, J. Am. Chem. Soc., 127, 7662 (2005). https://doi.org/10.1021/ja0508065
  17. Y. Shi, J. Liu, and Y. Yang, J. Appl. Phys., 87, 4254 (2000). https://doi.org/10.1063/1.373062
  18. W. L. Yu, Y. Cao, J. Pei, W. Huang, and A. J. Heeger, Appl. Phys. Lett., 76, 2502 (2000). https://doi.org/10.1063/1.126389
  19. A. Babel and S. A. Janeke, Macromolecules, 36, 7759, (2003). https://doi.org/10.1021/ma034717t
  20. M. Ranger, D. Rondeau, and D. Leclerc, Macromolecules, 33, 2016. (2000). https://doi.org/10.1021/ma9914366
  21. N. Miyaura and A. Suzuki, Chem. Rev., 95, 2457 (1995). https://doi.org/10.1021/cr00039a007
  22. A. Suzuki, Pure Appl. Chem., 63, 419 (1991). https://doi.org/10.1351/pac199163030419
  23. De Meijer and A. Diedrich, Metal Catalyzed Cross Coupling Reaction, 2nd Ed., Wiley-VHC, Weinheim, 2004.
  24. W. L. F. Armarego and D. D. Perrin, Purification of Laboratory Chemicals, 4th Ed., Butterworth-Heinemann, Oxford, 1996.
  25. M. J. Lee, M. S. Kang, M. K. Shin, J. W. Park, D. S. Chung, C. E. Park, S. K. Kwon, and Y. H. Kim, J. Polym. Sci. Part A: Polym. Chem., 48, 3942 (2010). https://doi.org/10.1002/pola.24174
  26. R. Wang, W. Z. Wang, G. Z. Yang, T. Liu, J. Yu, and Y. Jiang, J. Polym. Sci. Part A: Polym. Chem., 46, 790 (2008). https://doi.org/10.1002/pola.22424
  27. W. H. Melhuish, J. Phys. Chem., 5, 229 (1961).