DOI QR코드

DOI QR Code

Fabrication and Characterization of Silk/PVA Hydrogels by Sonication and Freezing-Thawing Technique

초음파와 동결/융해에 의한 실크/PVA 하이드로젤의 제조 및 특성 평가

  • Lee, Ok Joo (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Kim, Jung-Ho (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Ju, Hyung Woo (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Moon, Bo Mi (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Park, Hyun Jung (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Sheikh, Faheem A. (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Park, Chan Hum (Nano-Bio Regenerative Medical Institute, Hallym University)
  • 이옥주 (한림대학교 나노바이오재생의학 연구소) ;
  • 김정호 (한림대학교 나노바이오재생의학 연구소) ;
  • 주형우 (한림대학교 나노바이오재생의학 연구소) ;
  • 문보미 (한림대학교 나노바이오재생의학 연구소) ;
  • 박현정 (한림대학교 나노바이오재생의학 연구소) ;
  • ;
  • 박찬흠 (한림대학교 나노바이오재생의학 연구소)
  • Received : 2013.06.26
  • Accepted : 2013.08.08
  • Published : 2013.11.25

Abstract

Biomaterials like silk fibroin (SF) and poly(vinyl alcohol) (PVA) have received increasing attention in biomedical applications because of their attractive properties such as hydrophobicity and biocompatibility. In this study, efficient systems consisting of interpenetrating SF/PVA hydrogels were prepared as potential candidate for wound dressing applications. A simple approach consisting of sonication and a freezing-thawing technique was adopted to fabricate the hydrogels. Different blend ratios consisting of SF (100, 75, 50, 25 and 0%) with respect to the weight of PVA were prepared. The produced hydrogels were characterized for physico-chemical investigations using various states of techniques like; FE-SEM, TGA, FTIR and tensile strength. The addition of PVA to SF was proved to be beneficial in terms of reducing the pore size and swelling ratio of hydrogels. The mechanical property of SF had been increased by addition of PVA. These results show that SF/PVA hydrogels may serve as potential candidates for wound dressing application.

실크 피브로인과 poly(vinyl alcohol)(PVA)는 뛰어난 생체적합성과 수용성을 가져 생체의학 분야에서 주목하는 재료이다. 본 연구에서는 실크 피브로인과 PVA를 초음파와 동결/융해 방법으로 드레싱제로서 사용 가능한 하이드로젤을 제조하고자 하였다. 실크와 PVA를 100/0, 75/25, 50/50, 25/75, 0/100 비율로 혼합하였다. 제작한 하이드로젤을 FE-SEM, TGA, FTIR, 압축 강도 측정 등을 통해 물성을 분석하였다. 실크/PVA 하이드로젤은 PVA 함량이 증가할수록 공극 크기와 팽윤도는 감소하였으며, 젤의 강도는 증가하였다. PVA를 첨가함으로써 실크의 기계적 물성이 향상되는 것을 확인하였다. 본 연구에서 제조된 실크/PVA 하이드로젤은 드레싱제로서 사용 가능성을 제시하였다.

Keywords

Acknowledgement

Supported by : 농림수산식품기획평가원, 한림대학교

References

  1. J. Chen, S. Jo, and K. Park, Handbook of Biodegradable Polymers, Overseas Publishers Association, Amsterdam, p 203 (1997).
  2. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pram. Biopharm., 50, 27 (2000). https://doi.org/10.1016/S0939-6411(00)00090-4
  3. S. J. Park and C. H. Kim, Tissue Eng. Regen. Med., 4, 471 (2007).
  4. K. Burczak, T. Fujisato, M. Hatada, and Y. Ikada, Biomaterials, 15, 231 (1994). https://doi.org/10.1016/0142-9612(94)90072-8
  5. T. Hirai, T. Okinaka, Y. Amemiya, K. Kobayashi, M. Hirai, and S. Hayashi, Angew. Makromol. Chem., 240, 213 (1996). https://doi.org/10.1002/apmc.1996.052400120
  6. E. K. Choi, H. I. Kim, K. R. Park, and Y. C. Nho, J. Korean Ind. Eng. Chem., 14, 505 (2003).
  7. K. R. Park and Y. C. Nho, Polymer(Korea), 26, 792 (2002).
  8. Y. Zheng, M. K. Nguyen, C. He, C. T. Huynh, and D. S. Lee, Macromol. Res., 18, 1096 (2010). https://doi.org/10.1007/s13233-010-1110-z
  9. M. K. Nguyen and D. S. Lee, Macromol. Res., 18, 284 (2010). https://doi.org/10.1007/s13233-010-0315-5
  10. E. Pines and W. Rins, Macromolecules, 6, 888 (1973). https://doi.org/10.1021/ma60036a020
  11. C. M. Hassan, J. H. Ward, and N. A. Peppas, Polymer, 41, 6729 (2000). https://doi.org/10.1016/S0032-3861(00)00031-8
  12. W. E. Hennink and C. F. van Nostrum, Adv. Drug Deliv. Rev., 54, 13 (2002). https://doi.org/10.1016/S0169-409X(01)00240-X
  13. G. Khang, M. S. Kim, and B. H. Min, Tissue Eng. Regen. Med., 3, 376 (2006).
  14. I. C. Ueno, H. Y. Kweon, Y. H. Park, and S. Hudson, Int. J. Biol. Macromol., 29, 91 (2001). https://doi.org/10.1016/S0141-8130(01)00159-3
  15. N. Minoura, M. Tsukada, and M. Nagura, Polymer, 31, 265 (1990). https://doi.org/10.1016/0032-3861(90)90117-H
  16. N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. Imai, Biochem. Biophys. Res. Commun., 208, 511 (1995). https://doi.org/10.1006/bbrc.1995.1368
  17. M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res., 46, 382 (1999). https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
  18. Z. H. Ayub, M. Arai, and K. Hirabayashi, Polymer, 35, 2197 (1994). https://doi.org/10.1016/0032-3861(94)90250-X
  19. Z. H. Ayub, M. Arai, and K. Hirabayashi, Biosci. Biotechnol. Biochem., 57, 1910 (1993). https://doi.org/10.1271/bbb.57.1910
  20. P. H. Chao, S. Yodmuang, X. Wang, L. Sun, D. L. Kaplan, and G. Vunjak-Novakovic, J. Biomed. Mater. Res. B. Appl. Biomater., 95, 84 (2010).
  21. K. Numata, S. Yamazaki, and N. Naga, Biomacromolecules, 13, 1383 (2012). https://doi.org/10.1021/bm300089a
  22. E. K. Choi, H. I. Kim, K. R. Park, and Y. C. Nho, J. Korean Ind. Eng. Chem., 14, 505 (2003).
  23. X. Hu, Q. Lu, L. Sun, P. Cebe, X. Wang, X. Zhang, and D. L. Kaplan, Biomacromolecules, 11, 3178 (2010). https://doi.org/10.1021/bm1010504
  24. T. Jamnongkan and S. Kaewpirom, J. Polym. Environ., 18, 413 (2010). https://doi.org/10.1007/s10924-010-0228-6
  25. S. J. Bryant, K. A. Davis-Arehart, N. Luo, R. K. Shoemaker, J. A. Arthur, and K. S. Anseth, Macromolecules, 37, 6726 (2004). https://doi.org/10.1021/ma0499324
  26. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.013

Cited by

  1. Skin regeneration using duck’s feet derived collagen and poly(vinyl alcohol) scaffold vol.24, pp.4, 2016, https://doi.org/10.1007/s13233-016-4051-3
  2. Synthesis and Biocompatibility of PVA/NaCMC Hydrogels Crosslinked by Cyclic Freezing/thawing and Subsequent Gamma-ray Irradiation vol.39, pp.4, 2013, https://doi.org/10.9718/jber.2018.39.4.161