DOI QR코드

DOI QR Code

Preparation and Properties of Antimicrobial Zinc Alginate Films according to Solution Concentration

용액 농도에 따른 항균성 알긴산 아연 필름의 제조 및 그 특성

  • Lee, Ju-Hyun (Department of Advanced Organic Materials, Yeungnam University) ;
  • Seo, Hye-Jin (Department of Advanced Organic Materials, Yeungnam University) ;
  • Son, Tae-Won (Department of Nano, Medical &Polymer Materials, Yeungnam University) ;
  • Lim, Hak-Sang (Department of Biological &Environmental Engineering, Semyung University)
  • 이주현 (영남대학교 유기신소재공학과) ;
  • 서혜진 (영남대학교 유기신소재공학과) ;
  • 손태원 (영남대학교 나노메디컬유기재료공학과) ;
  • 임학상 (세명대학교 바이오환경공학과)
  • Received : 2013.05.06
  • Accepted : 2013.07.10
  • Published : 2013.11.25

Abstract

Zinc alginate films were prepared by a film maker from sodium alginate solutions of different weight ratios and then they solidified into 3 wt% content $ZnCl_2$ coagulation solution and washed and dried at a $60^{\circ}C$ oven for 20 min. The characteristics were measured by several methods (antimicrobial activity, viscosity, FTIR, TGA, SEM, EDS, contact angle, tensile strength and solubility) and the film properties were investigated. The antimicrobial test showed that the zinc alginate films result in excellent antimicrobial activity in the two strains (Klebsiella pneumonia, Staphylococcus). The surface of zinc alginate film from the solution of 9 wt% sodium alginate showed more uniform shape than any other films and the cross-section were hard and rough when the films were well-solidified by the $ZnCl_2$ solution. The tensile strength of zinc alginate films increased along with the concentration of sodium alginate solution due to the cross-linking, and the initial thermal decomposition temperature increased gradually.

Alginate를 농도 별로 용액상태로 제조한 후 필름 메이커를 이용하여 필름 형태로 만든 후 3 wt%의 $ZnCl_2$ 수용액에 필름을 고화시킨 후 수세하여 $60^{\circ}C$의 건조기에서 약 20분 동안 건조시켜 zinc alginate 필름을 제조하였다. 필름의 특성을 조사하기 위하여 항균성 및 점도와 FTIR, TGA, SEM, EDS 및 접촉각, 인장측정, 용해도분석 등을 측정하였다. 항균성 시험 결과, zinc alginate 필름에서는 두 균주(포도상구균, 폐렴간균) 모두 우수한 항균력이 나타나는 것을 확인하였다. 9 wt%의 sodium alginate로 제조한 zinc alginate 필름의 표면은 다른 농도별 필름보다 균일한 형태를 나타내었으며, $ZnCl_2$ 응고액에 잘 고화될 때 단단하고 거친 느낌의 단면 형태를 확인하였다. Zinc alginate 필름의 인장강도는 가교결합에 의해 sodium alginate 용액의 농도가 증가함에 따라 증가하였으며, 초기 열 분해 온도가 점차적으로 높아지고 있는 형태를 보였다.

Keywords

References

  1. H. S. Lee and J. H. Suh, Korean J. Biotechnol. Bioen., 17, 63 (2002).
  2. S. H. Ha, J. W. Rhim, B. Y. Kim, and M. Y. Baik, J. Korean Soc. Appl. Biol. Chem., 50, 111 (2007).
  3. S. M. Han, C. W. Nam, and S. W. Ko, J. Korean Fiber Soc., 37, 365 (2000).
  4. Y. Qin, H. Hu, and A. Luo, J. Appl. Polym. Sci., 101, 4216 (2006). https://doi.org/10.1002/app.24524
  5. Y. Qin, J. Appl. Polym. Sci., 91, 1641 (2004). https://doi.org/10.1002/app.13317
  6. T. W. Son, M. G. Lee, and S. J. Han, Text. Color. Finish., 23, 391 (2011).
  7. T. W. Son, J. H. Lee, M. K. Lee, and J. W. Cho, Text. Color. Finish., 23, 201 (2011). https://doi.org/10.5764/TCF.2011.23.3.201
  8. J. W. Rhim and J. H. Kim, Korean J. Food Sci. Technol., 36, 69 (2004).
  9. L. W. Chan, Y. Jin, and P. W. S. Heng, Int. J. Pharmaceut., 242, 255 (2002). https://doi.org/10.1016/S0378-5173(02)00169-2
  10. M. Teresa and W. C. Dorota, Fibers Text. East. Eur., 13, 35 (2005).
  11. J. W. Rhim, J. H. Kim, and D. H. Kim, Korean J. Food Sci. Technol., 35, 217 (2003).
  12. B. H. Lee, S. B. Lee, and W. G. Kim, Fiber Technology and Industry, 13, 21 (2009).
  13. A. Haug, B. Larsen, and O. Smidsrod, Acta Chem., 21, 691 (1967). https://doi.org/10.3891/acta.chem.scand.21-0691
  14. A. Haug and B. Larsen, Acta Chem., 16, 1908 (1962). https://doi.org/10.3891/acta.chem.scand.16-1908
  15. A. Penman and G. R. Sanderson, Carbohydr. Res., 25, 273 (1972). https://doi.org/10.1016/S0008-6215(00)81637-7
  16. H. Grasdalen, Carbohydr. Res., 118, 255 (1983). https://doi.org/10.1016/0008-6215(83)88053-7
  17. B. Larsen, O. Smidsrod, T. Painter, and A. Haug, Acta Chem., 24, 726 (1970). https://doi.org/10.3891/acta.chem.scand.24-0726
  18. C. K. Kuo and P. X. Ma, Biomaterials, 22, 511 (2001). https://doi.org/10.1016/S0142-9612(00)00201-5
  19. J. L. van Susante, P. Buma, G. J. van Osch, D. Versleyen, P. M. van der Kraan, W. B. van der Berg, and G. N. Homminga, Acta Orthop., 66, 549 (1995). https://doi.org/10.3109/17453679509002314
  20. M. O. Yoon, S. C. Lee, J. W. Rhim, and J. M. Kim, J. Korean Soc. Food Sci. Nutr., 33, 747 (2004). https://doi.org/10.3746/jkfn.2004.33.4.747
  21. J. W. Rhim, Lebensm Wiss Technol., 37, 323 (2004). https://doi.org/10.1016/j.lwt.2003.09.008
  22. T. Gilchrist and A. M. Martin, Biomaterials, 4, 317 (1983). https://doi.org/10.1016/0142-9612(83)90036-4
  23. F. Yokoyama, E. C. Achife, M. Matsuoka, Y. Shimamura, and K. Monobe, Polymer, 32, 1916 (1991).
  24. J. W. Rhim, J. H. Kim, and D. H. Kim, J. Korean Food Sci. Technol., 35, 271 (2003).
  25. M. Zeng, Z. Fang, and C. Xu, J. Membrane Sci., 230, 175 (2004). https://doi.org/10.1016/j.memsci.2003.11.020
  26. J. Jin, M. Song, and D. J. Hourston, Biomacromolecules, 5, 162 (2000).

Cited by

  1. Antimicrobial Activity and Mechanism of Polyvinyl Chloride Composite Containing Inorganic Bacteriocide vol.50, pp.3, 2013, https://doi.org/10.7473/ec.2015.50.3.223
  2. Antibacterial Activity and Mechanical Properties of Poly(Lactic-Acid) Composites Containing Zeolite-type Inorganic Bacteriocide vol.52, pp.3, 2013, https://doi.org/10.7473/ec.2017.52.3.201