DOI QR코드

DOI QR Code

폴리(비닐 알코올)/사포나이트 나노 복합체 필름 및 연신된 필름의 열적 성질, 모폴로지, 광학 투명성, 및 기체 투과성

Thermal Property, Morphology, Optical Transparency, and Gas Permeability of PVA/SPT Nanocomposite Films and Equi-biaxial Stretching Films

  • 함미란 (금오공과대학교 에너지융합소재 공학부) ;
  • 김정철 (한국생산기술연구원 광에너지 융합연구그룹) ;
  • 장진해 (금오공과대학교 에너지융합소재 공학부)
  • Ham, Miran (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jeong-Cheol (Energy and Applied Optics Team, Korea Institute of Industrial Technology) ;
  • Chang, Jin-Hae (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
  • 투고 : 2013.03.04
  • 심사 : 2013.05.16
  • 발행 : 2013.09.25

초록

용액 삽입법을 이용하여 다양한 함량의 사포나이트(SPT) 점토를 포함한 폴리(비닐 알코올)(poly(vinyl alcohol), PVA) 나노 복합체 필름을 제조하였다. SPT를 0에서 10 wt%까지 첨가한 PVA 나노 복합체 필름들의 열적 특성, 모폴로지, 광학 투명성 및 기체 투과성에 대해 조사하였다. 특히 5 wt% SPT 포함한 PVA 복합체 필름이 매우 우수한 열적 특성과 기체 차단성을 나타내었다. 5 wt% SPT 포함된 복합체 필름을 연신율에 따라 150에서 250%까지 이축 연신하였고, 이축 연신율에 따른 점토 분산성, 광학적 특성 및 기체 투과성에 대한 조사를 하였다. 다양한 비로 이축 연신한 PVA 나노 복합체 필름은 우수한 광학 투명성과 산소 차단성을 보였다.

Poly(vinyl alcohol)(PVA) nanocomposite films containing various saponite (SPT) clay contents were synthesized using a solution intercalation method. The thermal property, morphology, optical transparency, and gas permeability of the PVA nanocomposite films with various SPT contents in the range of 0 to 10 wt% were examined. PVA nanocomposite film containing 5 wt% SPT showed excellent thermal and gas barrier property. The hybrid films containing 5 wt% SPT were equibiaxially stretched with stretching ratios ranging from 150 to 250%. The clay dispersion, optical transparency, and gas permeability were also examined as a function of equibiaxial stretching ratio. The PVA nanocomposite films with various equibiaxial stretching ratios showed excellent optical transparency and barrier to oxygen permeability.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. Y. Fukushima and S. Inagaki, Incl. Phenom., 5, 473 (1987). https://doi.org/10.1007/BF00664105
  2. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  3. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamigato, J. Mater. Res., 8, 1174 (1993). https://doi.org/10.1557/JMR.1993.1174
  4. X. Fu and S. Qutubuddin, Polymer, 42, 807 (2001). https://doi.org/10.1016/S0032-3861(00)00385-2
  5. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  6. Y. S. Chol and I. J. Chung, Korea Chem. Eng., 46, 23 (2008).
  7. F. Suzuki, K. Nakane, and J. S. Piao, J. Mater. Sci., 31, 1335 (1996). https://doi.org/10.1007/BF00353114
  8. J.-H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, and G. S. Sur, J. Appl. Polym. Sci., 90, 3208 (2003). https://doi.org/10.1002/app.12996
  9. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  10. J. W. Gilman, Appl. Clay Sci., 15, 31 (1999). https://doi.org/10.1016/S0169-1317(99)00019-8
  11. Y. Kojima, A. Usuki, M. Kawasumi, and A. Okada, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  12. J. Bernard, A. Favier, T. Davis, C. B. Kowollik, and M. H. Stenzel, Polymer, 47, 1073 (2006). https://doi.org/10.1016/j.polymer.2005.12.004
  13. C. M. Hassan and N. A. Peppas, Adv. Polym. Sci., 152, 37 (2000).
  14. M. Levine, G. Iikka, and P. Weis, J. Polym. Sci. Part B: Polym. Chem., 2, 915 (1964). https://doi.org/10.1002/pol.1964.110020918
  15. S. M. Tadavarthy, J. H. Moller, and K. Amplatz, Am. J. Roentgenol., 125, 609 (1975). https://doi.org/10.2214/ajr.125.3.609
  16. J. Wen, V. J. Vasudevan, and G. L. Wilkes, J. Sol-Gel Sci. Technol., 5, 115 (1995). https://doi.org/10.1007/BF00487727
  17. S. K. Ham, M. H. Jung, and J.-H. Chang, Polymer(Korea), 30, 298, (2006).
  18. K. E. Strawhecker and E. Manias, Chem. Mater., 12, 2943 (2000). https://doi.org/10.1021/cm000506g
  19. K. Yano, A. Usuki, T. Kurauchi, and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993). https://doi.org/10.1002/pola.1993.080311009
  20. K. Nakane, T. Yamashita, K. Iwakura, and F. Suzuki, J. Appl. Polym. Sci., 74, 133 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
  21. W. Y. Chuang, T. H. Yong, W. Y. Chiu, and C. Y. Lin, Polymer, 41, 5633 (2000). https://doi.org/10.1016/S0032-3861(99)00818-6
  22. N. Ogata, S. Kawakage, and T. Ogihara, J. Appl. Polym. Sci., 66, 573 (1999).
  23. T. J. Pinnavaia, Science, 220, 365 (1983). https://doi.org/10.1126/science.220.4595.365
  24. J. H. Yeun, G. S. Bang, B. J. Park, S. K. Ham, and J.-H. Chang, J. Appl. Polym. Sci., 101, 591 (2006). https://doi.org/10.1002/app.23372
  25. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, Chem. Mater., 13, 3516 (2001). https://doi.org/10.1021/cm0110627
  26. T. Lan, P. D. Kaviratana, and T. J. Pinavaia, Chem. Mater., 8, 1584 (1996). https://doi.org/10.1021/cm960227m
  27. Y. Kojima, A. Usuki, M. Kawasumi, and A. Okada, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  28. D. Shi, W. Yu, R. K. Y. Li, Z. Ke, and J. Yin, Eur. Polym. J., 43, 3250 (2007). https://doi.org/10.1016/j.eurpolymj.2007.05.030
  29. K. Haraguchi, M. Ebato, and T. Takehisa, Adv. Mater., 18, 2250 (2006). https://doi.org/10.1002/adma.200600143
  30. R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nature Mater., 5, 494 (2006). https://doi.org/10.1038/nmat1655
  31. Y. Bin, Y. Tanabe, C. Nakabayashi, H. Kurosu, and M. Matsuo, Polymer, 42, 1183 (2001). https://doi.org/10.1016/S0032-3861(00)00423-7
  32. Y. Q. Rao, J. Greener, C. A. Avilaorta, B. S. Hsiao, and T. N. Blanton, Polymer, 49, 2507 (2008). https://doi.org/10.1016/j.polymer.2008.03.046
  33. S. Jeol, F. Fenouillot, A. Rousseau, V. K Masenelli, C. Gauthier, and J. F. Broiois, Macromolecules, 40, 3229 (2007). https://doi.org/10.1021/ma062886i
  34. Y. M. Kim and J.-H. Chang, Polymer(Korea), 36, 478 (2012).
  35. H. Ohgi and T. Sato, Macromolecules, 26, 559 (1993). https://doi.org/10.1021/ma00055a025
  36. J. E. Shin, M. R. Ham, J. C. Kim, and J.-H. Chang, Polymer (Korea), 35, 402 (2011).
  37. W. F. Jaynes and J. M. Bigham, Clays Clay Miner., 35, 440 (1987). https://doi.org/10.1346/CCMN.1987.0350604
  38. J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004). https://doi.org/10.1016/j.polymer.2004.05.012
  39. Z. M. Liang, J. Yin, J. H. Wu, Z. X. Qiu, and F. F. He, Eur. Polym. J., 40, 307 (2004). https://doi.org/10.1016/j.eurpolymj.2003.09.020
  40. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003). https://doi.org/10.1002/app.11884
  41. S. Kumar, J. P. Jog, and U. Natarajan, J. Appl. Polym. Sci., 89, 1186 (2003). https://doi.org/10.1002/app.12050
  42. C. Liu and Y. Yang, Polym. Test., 28, 801 (2009). https://doi.org/10.1016/j.polymertesting.2009.07.002
  43. H. R. Frischer, L. H. Gielgens, and T. P. M. Koster, Acta Polym., 50, 122 (1999). https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  44. T. D. Fornes, P. J. Yoon, D. Lunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002). https://doi.org/10.1016/S0032-3861(02)00400-7
  45. J. H. Petropoulos, Adv. Polym. Sci., 64, 93 (1985). https://doi.org/10.1007/3-540-13483-2_3
  46. J.-H. Chang and K. M. Park, Polym. Eng. Sci., 41, 2226 (2001). https://doi.org/10.1002/pen.10918
  47. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002). https://doi.org/10.1016/S0032-3861(01)00790-X
  48. R. K. Bharadwaj, Macromolecules, 34, 9189 (2001). https://doi.org/10.1021/ma010780b
  49. U. Min, C. S. Yoon, and J.-H. Chang, J. Appl. Polym. Sci., 126, E2 (2012).
  50. R. S. Rajeev, E. Harkin-Jones, K. Soon, T. McNally, G. Menary, C. G. Armstrong, and P. J. Martin, Eur. Polym. J., 45, 332 (2009). https://doi.org/10.1016/j.eurpolymj.2008.10.036
  51. Y. Ke, C. Long, and Z. Qi, J. Appl. Polym. Sci., 71, 1139 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO;2-E

피인용 문헌

  1. Nanotechnology: An Untapped Resource for Food Packaging vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01735
  2. Nanoclay migration from food packaging materials vol.33, pp.3, 2013, https://doi.org/10.1080/19440049.2015.1136844
  3. Defect and temperature effects on the mechanical properties of kaolinite: a molecular dynamics study vol.54, pp.2, 2013, https://doi.org/10.1180/clm.2019.22