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The problem of constrained sequencing of a set of jobs on a conveyor system with the objective of minimizing setup cost 
is investigated in this paper. A setup cost is associated with extra material, labor, or energy required due to the change of attributes 
in consecutive jobs at processing stations. A finite set of attributes is considered in this research. Sequencing is constrained 
by the availability of conveyor junctions. The problem is motivated by the paint purge reduction problem at a major U.S. automotive 
manufacturer. We first model a diverging junction with a sequence-independent setup cost and predefined attributes as an assignment 
problem and this model is then extended for a more general situation by relaxing the initial assumptions in various ways.
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1. Introduction1)

1.1 Motivation
Today, most high-volume production systems may appear 

to be old fashioned transfer lines but in fact have become 
highly flexible, producing a large family of products such 
as automobiles, electronics, and other consumer goods. One 
objective of striving for flexibility is to reduce the setup cost 
or time-to-respond to the ever-increasing diversity of custom-
er demands. However, even the most flexible systems may 
still incur some setup cost in job changes. It is often desirable 
to change the job sequence to further reduce the setup cost 
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and time.
Conveyors are the most popular material transfer mecha-

nism in high-volume production. Conveyors can transfer large 
amounts of material with simple motion control and also pro-
vide buffer space. However, simple conveyor segments are 
usually constrained to operate in a First-In-First-Out (FIFO) 
principle. The sequence of materials on a simple conveyor 
segment cannot be changed by the conveyor itself. To change 
the sequence in a conveyor system, one needs special mecha-
nisms such as bypass, transfer, and spur. The use of special 
mechanisms costs money and takes up floor space, especially 
when transporting large jobs, making it important to mini-
mize their use and to maximize their utilization in operation.

However, diverging conveyor junction points and/or off-line 
buffers (a conveyor itself can be considered as an on-line 
buffer) can also be used to change the sequence. Junction 
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points and off-line buffers are frequently observed in manu-
facturing facilities and changing the control logic of such 
equipment is relatively inexpensive. Therefore, using junc-
tion points or off-line buffers is preferred to using special 
mechanisms because of the reduced initial investment cost 
and floor space usage.

Use of junction points and off-line buffers to change the 
job sequence can be found in the paint shop operation of 
automobile manufacturing where reducing the number of car 
color changes is desired. <Figure 1> shows a diverging junc-
tion with an off-line buffer where a single upstream conveyor 
feeds a finite sequence of cars into two downstream convey-
ors that lead to the paint booth. Each car at the end of the 
upstream conveyor is allowed to the visit off-line buffer be-
fore it is fed to the downstream conveyors. It is desirable 
that color changes are minimized in the downstream conveyors. 
In <Figure 1>, the number of setups to paint the five cars 
can vary from zero to four, depending on the dispatch se-
quence at the diverging point. Note that the minimum num-
ber of setups becomes two if an off-line buffer does not 
exist.

Incoming ConveyorOutgoing Conveyors

Offline BufferStation 2

Station 1

<Figure 1> Diverging Conveyor Example

Our sequencing problem can be defined by the following 
two sets of elements. First, the design parameters include :

∙number of downstream queues at the junction
∙capacity of the upstream (and downstream) queues
∙capacity of the off-line buffer at the junction - if one 

exists
∙discipline supported by the upstream queues, the down-

stream queues, and the off-line buffer, respectively
∙configuration of the junction. 

Second, the known operational parameters include:
∙attributes of the jobs in each queue,
∙setup cost between consecutive jobs in the downstream 

queue.

The operational decision is the dispatch sequence at the 
junction. The setting of multiple upstream conveyors, multi-
ple downstream conveyors and/or storage buffers is com-
monly observed in many real-world manufacturing environ-
ments, including the case study we conducted, as shown in 
<Figure 2>. In <Figure 2>, for the car at the end of any 
upstream conveyor, this car may visit an off-line buffer, or 
bypass an off-line buffer and go directly to one of the three 
downstream conveyors. Since the car visiting off-line buffer 
will be ready to be released to one of downstream queues 
after some time, based on the queue discipline and transfer 
time of the off-line buffer, the off-line buffer can be used 
to further reduce the number of color changes.

<Figure 2> Multiple Incoming and Outgoing Conveyors 
with an Off-line Buffer

While an optimal or a near-optimal solution may be found 
by observation for the problem of minimizing the number 
of color changes in <Figure 1>, finding an optimal solution 
becomes very difficult when the number of incoming cars 
increases in a more complex junction. The objective in pro-
duction also may include minimizing cycle times or work 
in process. As can be seen, the minimization of setup alone 
is rather complex and therefore this paper is restricted to part 
of the conveyor system design and control with the objective 
of minimizing setup costs. More specifically, we restrict our 
attention to a constrained sequencing problem having one up-
stream (incoming) conveyor (queue) and no off-line buffer.

1.2 Problem Statement
Consider the problem of constrained sequencing of a finite 

set of jobs on a conveyor system with the objective of mini-
mizing setup cost. A setup occurs whenever two consecutive 
jobs do not share the same attribute at a processing station 
served by the conveyor system. The conveyor system con-
sists of FIFO conveyor segments and special mechanisms 
such as junctions and off-line buffers. A junction is an inter-
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face between M upstream conveyors and N downstream con-
veyors with or without an off-line buffer. It is assumed that 
M = 1 and N > 1 with or without an off-line buffer. Time- 
based measures such as cycle time are not considered.

The organization of this paper is as follows. Relevant liter-
ature is reviewed in Section 2. Related problems are defined 
and analytical solution methodology is proposed in Section 
3. Our research contributions are summarized and future re-
search directions are discussed in Section 4.

2. Literature Review

Morley and Schelberg [36], Morley [34], and Morley and 
Ekberg [35] discussed algorithms for assigning trucks to paint 
booths in a truck facility to minimize total make-span and 
the number of paint flushes. They applied market-based bid-
ding algorithms to a GM plant and reported a 100% increase 
in average color block size in their case study. Their heuristic 
method turned out to have many advantages - easy to imple-
ment, robust with respect to schedule changes or machine 
breakdowns, and effective reduction of paint changeovers. 
Campos et al. [12] compared Morley and Ekberg’s mar-
ket-based approach with an ant-inspired response threshold 
algorithm and used a genetic algorithm for getting parameter 
values for the above two algorithms. Kittithreerapronchai and 
Anderson [29] simulated a market-based algorithm as well as 
an ant-inspired algorithm. They found that some parameters 
in each algorithm could be removed since they are very in-
sensitive to the objective function value. All the above ap-
proaches use artificial intelligence (AI) techniques to tackle 
the constrained sequencing problem. These AI approaches 
are easy to implement and robust to system disruptions such 
as paint booth breakdowns.

Atassi [3] proposed the use of temporary re-sequencing, 
facilitated by an automated storage and retrieval system 
(AS/RS). The AS/RS acts as a buffer that can store cars 
before and after painting. Using this buffer, a plant can per-
turb the order for painting cars to create larger paint blocks 
and then restore the original sequence after painting. Myron 
[38] examined the effect of forming large blocks of cars with 
the same color at an automotive assembly plant. Using dis-
crete event simulation, he showed that a simple block pro-
tection rule could significantly reduce setup cost when it is 
coupled with pre- and post-sequencing using a fully flexible 
AS/RS.

However, AI or simulation approaches have the drawback 
of an inability to provide any optimality guarantee or upper 
or lower bound. In optimization modeling approaches, Choe 
et al. [16] was the first to model the constrained sequencing 
problem as an optimization problem and to get a upper 
bound. He used an AS/RS to increase the size of paint blocks 
while maintaining a workload-balanced vehicle sequence. 
More specifically, the problem is how to perturb the original 
car flow around the vehicle painting station to reduce color 
setup with the constraint of not violating maximum allowable 
deviation from the original sequence. He modeled the prob-
lem as a traveling salesman problem with time windows, 
and succeeded in reducing the model to a manageable size 
and getting very tight bounds - empirically within 2.5% of 
optimality - by exploiting the special problem structure. He 
also discussed various relaxations of the problems for getting 
a near-optimal solution within a reasonable time. To our 
knowledge, he was the first to model the color change reduc-
tion problem using an optimization formulation. However, 
his model is different from the models in this research in 
that he used an AS/RS while we use diverging conveyors 
as well as off-line buffer to re-sequence the incoming cars.

A similar setup reduction problem with constrained se-
quencing occurs in rail classification yards. In rail classi-
fication yards, freight cars are separated, sorted according 
to their final destination, and assembled to form new out-
bound train blocks. Because the classification process re-
quires considerable resources, one of the objectives is to min-
imize reclassification. Typically, cars with different final des-
tinations but sharing some initial portion of their trips are 
assembled into blocks. In each rail classification yard, blocks 
are built and staged on classification tracks where they wait 
for the departure of an outbound train. The list of potential 
blocks that may go into each outbound train is specified by 
the makeup policy. Therefore, one needs to send each to 
the appropriate classification track based on the sorting 
strategy. In this rail classification problem, if a block at the 
converging junction fails to join the desired train, it re-
circulates back to the diverging junction (called ‘re-hump-
ing’). Therefore, the rail classification problem can be re-
garded as a special case of the constrained sequencing prob-
lem with a diverging junction and a diverging/converging 
junction shown in <Figure 3>.

The rail classification problem is similar to the constrained 
sequencing problem to be addressed in this research in terms 
of the decisions to be made. However, it has two different 
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. . .

<Figure 3> The Rail Classification Problem as a Special 
Case of the Constrained Sequencing Problem

features as follows. First, departing and arriving train schedule 
constraints as well as the capacity of each classification track 
should be explicitly considered. Second, the number of chang-
eovers should be counted on the rail for re-humping, not 
on the rail exiting the classification yard because attaching 
any ‘wrong’ car in a departing train is now allowed.

This topic was explored by Siddiqee [43], who compared 
four sorting and train formulation schemes in a railroad clas-
sification yard. Yagar et al. [47] suggested a dynamic pro-
gramming approach as well as a screening technique to opti-
mize sorting and assembly operations. The relative perform-
ance of different multistage sorting strategies were inves-
tigated by Daganzo et al. [21]. Each classification track is 
assigned several blocks and cars should be resorted during 
train formulation in multistage sorting. They derive equations 
for the service time per car of triangular sorting in classi-
fication yards. Three papers written by Daganzo (Daganzo [18], 
Daganzo [19], and Daganzo [20]) also analyze and compare 
different classification strategies and give expressions for the 
switching work and space requirements. Dynamic blocking, 
in which the assignment of blocks to classification tracks 
is allowed to vary through time, is considered in the last 
two papers. See Assad [1], Assad [2], Choe et al. [16], and 
Cordeau et al. [17] for a general review of rail transportation 
problems. However, because the rail classification problem 
considers inherent differences between the rail classification 
problem and the constrained sequencing problem, all sorting 
strategies discussed in the above cited papers are unrealistic 
to apply to the constrained sequencing problem (either with 
a diverging junction only, or with a random-access off-line 
buffer only) that are modeled in this dissertation.

Another decision-making problem can be found in the 
Order Accumulation / Sortation System (OAS) in a typical 
automated distribution center. In a common order picking 
system design, the sortation functions are separated from the 
order picking functions. To retrieve the items of an order 
from the warehouse, picking systems are used and many of 

these systems use ‘pick-wave’ where a group of orders is 
picked simultaneously with each picker being responsible for 
picking a single group of items for all the orders in a wave. 
Such a wave approach has been found to be more efficient 
than a serial picking scheme (where each picker selects all 
the items for one or more orders) in many systems. However, 
wave picking requires further sorting that is not required by 
serial picking systems. After retrieval by the sorting system 
from the warehouse, items move as a wave to OAS where 
they are assigned to one of shipping lanes for sortation into 
orders. Assignments are made based on the adopted lane as-
signment strategy and if recirculation is allowed, an item re-
circulates OAS until a shipping lane is assigned to that item. 
Therefore, identifying the optimal lane assignment strategy 
can be considered as a special case of the constrained se-
quencing problem with a diverging junction and an off-line 
buffer (i.e. recirculating conveyor) as in <Figure 4>.

. . .

Shipping Lanes

Recirculating Conveyor

From Picking System

<Figure 4> Lane Assignment Problem as a Special Case 
of the Constrained Sequencing Problem

However, like the rail classification problem, the lane as-
signment problem in OAS has a few characteristics different 
from the constrained sequencing problem as follows. First, 
capacity of each shipping lane needs to be explicitly con-
sidered. Second, an order may be pre-assigned to a specific 
shipping lane (e.g. a shipping lane dedicated for FedEx). 
Finally, if an order is not pre-assigned, usually a nonempty 
lane is dedicated to an order until the lane receives all items 
of that order. As a result, there are two common categories 
of lane assignment strategies - fixed priority rules and the 
next available rules (i.e. incidental rules). Fixed priority rules 
include such popular rules as ‘sort the largest (or smallest) 
orders first’ while the next available rules assign the next 
available lane to the item belonging to an order that has not 
yet been assigned any lane.

Research on OAS is relatively scarce even though there 
exist many implementations of such systems in industry (see 
Johnson and Lofgren [28], Gould [22], Gould [23], Horrey  
[26], Schwind [41], and Witt [46]). In one of the first papers 
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to analyze OAS, Bozer and Sharp [9] used simulation to eval-
uate the throughput of OAS as a function of the number and 
length of lanes, the presence of a recirculation conveyor, the 
control system, and the induction capacity with the assump-
tion that each lane is assigned to one order. Bozer et al. [8] 
also used simulation to examine various line assignment strat-
egies as well as wave release strategies under the assumption 
that there are more orders than lanes in OAS, finding in-
cidental rules consistently outperforms fixed priority rules. 
Johnson [27] proves this result by an analytical model for 
OAS. Choe [13], Choe and Sharp [14], Choe et al. [15], and 
Choe et al. [16] deal with questions on the design of both the 
picking system and its relationship to OAS. They developed 
approximate queueing models for the picking and OAS sub-
systems and incorporated those models into an overall analy-
sis of the effect of picking schemes. Meller [32] developed 
an algorithm for finding optimal lane assignment strategy 
when truck-loading requirements governs the sequence of or-
der sortation. Customer orders are reverse loaded to company 
owned trucks with pre-specified delivery routes in the appro-
priate sequence based on the truck’s route. A binary integer 
program is formulated and solved and this model assigns 
trucks and orders to shipping lanes with the objective of mini-
mizing the total sorting time. Apart from the research specific 
to OAS, research on conveyor theory has been widely con-
ducted (Muth [37] for a general review and Bastani [4] for 
recent works). However, all of those works deal with issues 
on material flow on the conveyor system (e.g. throughput, num-
ber of loading/unloading stations, time delay, and capacity).

Despite the fact that there is a large body of literature on 
sequencing assembly lines, most work adopts a static ap-
proach as a basic assumption of the problem (see Baybars [5] 
and Yano and Bolat [48] for a general review) and does not 
consider the constraints imposed by the material handling de-
vices, such as strict FIFO constraints on a conveyor. The pri-
mary concern of a static approach is how to determine a sin-
gle job sequence for the entire line for an available or recur-
ring set of jobs, whereas the objective is, typically, to balance 
workload among the different processing departments (see Lee 
and Vairaktarakis [31] and Yano and Rachamadugu [49]). 
However, a dynamic approach would change the sequence 
on the fly for a given line without mechanical sequencing 
constraints.

Few papers, especially those that deal with mixed assem-
bly lines, consider sequence-dependent setups. For example, 
Burns and Daganzo [11] and Bolat et al. [7] consider lines 

where different jobs have different attributes or options and 
a setup occurs whenever two jobs with different options fol-
low each other. They develop heuristics for sequencing these 
jobs with the objective of minimizing total setup cost.  
However, they do not consider the issue of constrained se-
quencing and assume that jobs have unique attributes. The 
issue of sequencing jobs with options is also discussed by 
Yano and Rachamadugu [49] that considers cases where jobs 
with different options have different processing times. 
However, they assume that there is no setup between jobs 
with different options.

The issue of sequence-dependent setups has been addressed 
extensively in the traditional scheduling literature. Most such 
papers consider a single machine problem with multiple jobs, 
where individual jobs may belong to different families. A set-
up occurs whenever two consecutive jobs belong to different 
families. The individual jobs, irrespective of family member-
ship, may carry different weights and have different due dates. 
The objective is to determine a sequence of jobs that optimizes 
one or more performance measures - typically, a function of 
job completion time such as maximum lateness, weighted 
completion time, or weighted tardiness. Examples of this work 
include Monma and Potts [33], Potts and Wassenhove [40], 
Unal and Kiran [44], and Webster and Baker [45]. In general, 
scheduling with sequence-dependent setups is NP-hard, with 
polynomial algorithms available only for a few special cases 
(see Bruno and Downey [10] and Laporte [30]).

In all of the above literature on scheduling, mixed assembly 
line, or sequence-dependent setups, it is assumed that there 
is full flexibility as to how jobs are sequenced - i.e. not con-
strained by the sequence change mechanism. It is also as-
sumed that setups are family- or lot-specific, with family or 
lot membership being known. The problem discussed in this 
paper is different from all those in above literature in two 
aspects. First, it is assumed that there is only constrained 
flexibility in how jobs can be re-sequenced. Second, some 
flexibility is allowed in assigning attributes that determine 
family membership among jobs.

3. Analytical Modeling

3.1 Constant Setup Cost with a Fixed Number of 
Downstream Queues

The simplest diverging junction is a single upstream queue 
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feeding  identical downstream queues. The problem is to 
decide which job is sent to which downstream queue to mini-
mize total setup cost on all downstream queues. We assume 
as follows :

1. The number of downstream queues is fixed.
2. Setup cost is independent of job attributes and downstream 

queues.
3. The number of jobs in the upstream queue is fixed.
4. The attributes of all jobs in the upstream queue are fixed.
5. The capacity of each downstream queue is unlimited.
6. There is no setup cost for the first and last jobs sent to 

each downstream queue.
7. FIFO discipline is applied on all queues.
8. All setups are done instantaneously - no setup time.

Assumption 6 means that if all jobs in a downstream queue 
have identical attributes, then no setup cost is assumed for 
that queue. This assumption can be relaxed by adding con-
straints that explicitly consider setup costs for the first and 
last jobs. Assumption 1 and 2 are relaxed in Section 3.2 
as the model is extended. We also need to introduce the 
following notations :

  upstream queue
  number of downstream queues
  number of jobs in 

  changeover cost a constant for each changeover
 











 i f the attribute of  job in  is different from
the attribute of  job in 

 otherwise
 









 i f  job in is located right before the  job
in  ona downstream queue

 otherwise
 









 i f   job in is the last item to be sent to a
downstream queue

 otherwise
 









 i f  job in is the last item to be sent to a
downstream queue

 otherwise

One can find the following properties of the constrained 
sequencing problem.

Property 1.1 : Dispatching Constraint
The FIFO discipline of  prohibits the    job in U from 
being dispatched before the   job in U is dispatched.

Property 1.2 : Conservation of Precedence Relationship
Due to Property 1.1, the precedence relationship among jobs 

in  is maintained in each downstream queue. That is, if  the  
   job precedes the    job in  and both are dispatched 
to the same downstream queue, then the    job precedes 
the    job in the downstream queue.

The above two properties restrict the range of  so that 
index  is always less than . In addition, if each job as 
well as each downstream queue is represented as a node in 
a network, then represent each feasible arc in this network 
can be associated with ,  , or  . Furthermore, the defi-
nitions of ,  , and    require that each node has exactly 
one incoming arc and one outgoing arc. This way the con-
strained sequencing problem can be transformed as a network 
problem. <Figure 5> shows a possible dispatching result 
from the example in <Figure 1>, where <Figure 6> is the 
associated network representation.

Incoming ConveyorOutgoing Conveyors

Station 2

Station 1

    <Figure 5> A Possible Dispatching Result for the 
Example in <Figure 1>
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zb2 y 5by4a

5

x23

x14
x35

  <Figure 6> Network Representation Associated with 
<Figure 5>

The network described above can be interpreted such that 
if a job is directly connected with another job by variable 
x, then these two jobs are sent to the same downstream queue 
and are adjacent to each other in that queue. For the first 
job sent to a downstream queue, the incoming arc to the 
associated node is represented by z. For the last job, the 
outgoing arc from the associated node is represented by y. 
In <Figure 6>, a downstream queue has jobs 1 and 4, and 
another downstream queue has jobs 2, 3, and 5, in sequence. 
Then as discussed in Han [25] and Han [24], the above net-
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work representation can be transformed into the following 
mixed-integer programming (MIP) formulation.

Minimize 
  




 


   (1)

subject to


 




 



  ∀ (2)


  




 



  ∀ (3)


  



  ∀ (4)


 



  ∀ (5)

,  , , ’∈  ∀    (6)

The objective function (1) is the total setup cost of all 
jobs after dispatching. The Property 1.1 and 1.2 are ensured 
by not defining variables  if index  is equal to or bigger 
than . (2) ensures that any job  is assigned a successor 
job among all jobs after the   job in , or is assigned 
as the last job in a downstream queue. (3) ensures that any 
job  is assigned a predecessor job among all jobs preceding 
the    job in , or is assigned as the first job in a down-
stream queue. The intention of (4) and (5) is that each down-
stream queue is assigned exactly one first job and one last 
job, respectively. Note that if the first job is the same as 
the last job, then only one job is assigned to that downstream 
queue. The unintended result of (4) and (5) is that each 
downstream queue is utilized - i.e. at least one job is assigned 
- even when it is not necessary. In reality, achieving the 
minimum setup cost may not require all  queues to be 
utilized. To find the minimum number of queues for achiev-
ing the minimum cost, one may try to find an optimal sol-
ution with , , , … queues until the minimum 
cost starts to increase. Another possible way of simulta-
neously identifying the number of queues to be used as well 
as the minimum cost is explained in Section 3.2.

Constraint (6) is added because the meaning of the deci-
sion variables demands integrality. However, (6) can be re-
moved without loss of generality because of the following 
reasoning. A matrix is called totally unimodular if the deter-
minant of every square submatrix formed from it has determi-
nant -1, 0, or +1 (Bazaraa et al. [6]). If our MIP formulation 
is represented as ‘maximize c subject to    where  

is a binary variables vector’, then  is a node-arc incidence 
matrix of a network because our formulation can be repre-
sented as a network. Note that the node-arc matrix is com-
posed of (0, 1, –1), has two no-zero entries in each column, 
and the summation of each column equals zero.

In addition, if a matrix composed of (0, 1, –1) has no 
more than two no-zero entries in each column and the sum-
mation of all elements in column  equals zero if column 
 contains two no-zero coefficients, then this matrix is totally 
unimodular (Nemhauser and Wolsey [39]). Therefore,  is 
totally unimodular because  is composed of (0, 1, –1), 
has two no-zero entries in each column, and the summation 
of each column equals zero. Furthermore, if  is totally un-
imodular and each element of  is integer-valued, then the 
optimal solution assigns all variables integer values (see 
Shapiro [42] for a proof). Therefore, (6) can be removed. 
With (6) removed, the formulation reduces to the well-solved 
assignment problem. The removal of (6) without loss of gen-
erality can also be proved by showing a one-to-one corre-
spondence relationship between two equally sized sets com-
posed of all jobs and queues as illustrated in <Figure 7>.

b3 4
JOBS QUEUES

a5

b3 4

JOBS QUEUES

a5

 <Figure 7> Assignment Problem Example of 3 Jobs and 
2 Queues

Because the Hungarian method can solve the assignment 
problem optimally in   , modeling it as an assignment 
problem - compared to modeling it as an MIP or LP problem 
- has advantages in terms of speed and implementation cost. 
For speed, practical problems can be solved with a few hun-
dred jobs to optimality in several seconds, allowing for 
on-the-spot optimal control in many applications. For im-
plementation cost, dispatching logic in diverging or converging 
junctions of conveyors is usually implemented by Programm-
able Logic Controllers (PLCs). A PLC has limited memory, 
usually a few megabytes, and CPU power. Therefore, in most 
cases implementing an MIP- or LP-based algorithm in PLC 
environment requires an external system - where the MIP/LP 
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solver is loaded - and a network module connecting the ex-
ternal system and PLC, causing high hardware and software 
costs. In contrast, implementing an assignment-problem-based 
algorithm can save implementation time and cost since it 
can be implemented in a PLC standalone environment and 
is relatively easy to program and debug.

3.2 Attribute Dependent Setup Cost with a 
Variable Number of Downstream Queues

3.2.1 Introduction

In reality, setup cost often depends on downstream queues 
and the attributes of the job to be processed. For example, 
the setup cost for color change in the paint shop usually 
depends on the paint color to be changed. In general, setup 
cost depends on both the job just finished and the job to 
be processed next. In addition, in the simple constrained se-
quencing problem model discussed in section 3.1., each 
downstream queue is forced to have at least one job. In the 
conveyor system design stage, the number of downstream 
conveyors is a design parameter. The cost of an additional 
conveyor, processing station, and extra floor space can out-
weigh the cost savings from setup reduction. In system oper-
ation, utilizing each additional downstream queue and work-
station may incur extra costs for the labor, energy, and initial 
process setup. At one extreme, if the number of downstream 
queues is equal to one, no re-sequencing is possible. At the 
other extreme, if the number of queues is equal to the number 
of attributes, no setup cost is necessary because each queue 
can have jobs with identical attributes. Therefore, for a given 
set of jobs and cost values, if   and  denote the optimum 
number of downstream queues and the number of attributes, 
respectively, then the following condition holds :     

≤≤       (7)

Based on (7), the maximum number of downstream queues 
one needs to consider is . Each downstream queue is des-
ignated to a specific attribute if  queues are available for 
use. However, when the queue installation cost is considered, 
the optimum number of downstream queues is a variable and 
is often less than . The rationale here is to start with max-
imum , then to decide which queue to use and which queue 
not to use to minimize total cost. First, define the cost param-
eters as follows :

 ′ = changeover cost when   job in  is located 

right before the    job in  on a downstream queue (for 
the case that a specific attribute is given to each job in  
and it is known in advance)

 ′= cost of installing downstream queue q

Recall from Section 3.1., constraints (4~5) restrict each 
queue to exactly one incoming unit flow and one outgoing 
unit flow, shown in <Figure 8>.
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 <Figure 8> Part of the Network Representation for the 
Model in Section 3.1

A side effect of these constraints is that each queue is 
assigned at least one job. In this Section, the number of 
queues to be constructed is an integer and some queues are 
allowed to have no assigned job. The challenge is to allow 
some queues have no assigned job and, at the same time, 
to maintain a node-arc model.

Although there might be different ways of modeling such 
a situation, the approach taken here is to use all  queue 
nodes. Virtual arcs  are defined to designate the outgoing 
flow from the unused queue node  to other queue node.  
Similarly, virtual arcs   are defined to designate the incom-
ing flow to queue node  -  may or may not be used - to 
go from other queue node. The extended queue node in this 
definition is depicted in <Figure 9>.
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  <Figure 9> Extension the Network Representation in 
<Figure 7>

For each queue node, constraints


  



 
   ≠



  and 
 



 
  ≠



 

are added. The former restricts a queue to have an entering 
arc either from a job, or from another queue. The latter sim-
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ilarly restricts the exiting arc. With the addition of virtual arcs 
and the above two constraints, a node-arc model can be built 
for the problem.

3.2.2 Installation Cost Calculation

The fact that no job is assigned to a queue with virtual 
links complicates the calculation for installation cost. Furth-
ermore, a queue with or without an assigned job may be 
connected with other queues via virtual arcs. One way to 
handle this is to assign half of the installation cost to each 
arc connecting a job and a queue.

In this way, if queue  is connected from a job and con-
nects to a job, the total cost becomes correct. If queue  
is connected from queue  (≠) and connects to a job, 
an adjustment need to be made by associating cost 




〃〃  to virtual arc  . This treatment makes up the 

installation cost for queue  (


〃



〃


〃) which can-

cels out the installation cost for queue  (


〃



〃
).

Before the other cases are explained, the auxiliary in-
stallation cost associated with queue , denoted as  , is 
defined.   represents the summation of costs of the arcs 
that start from or end at queue . Then   is defined as 
follows :

  



〃
  




 



 



 



 
   ≠




〃〃

 
  ≠




〃〃






 




〃
  




 



 

 
  ≠




〃〃



 
  ≠




〃〃

Note that terms




 
   ≠




〃〃

 
  ≠




〃〃






are divided by 2 because these terms are double-counted 
when   is summed for all queues for use in the MIP 
formulation. Since queues are interconnected by variable  , 
  inevitably takes the following recursive form :

 = true installation cost of queue   
   , where    denotes a function.

It will be shown that all      and     
terms in the above equation eventually cancel out if one sums 
  over all queues, resulting in 



= total queue in-

stallation cost.

First, from 


  



 
  ≠



  and 


 



 
  ≠



 , one can derive

≤
  



  
   ≠



 
 



  
  ≠



≤

and all these variables are integers by definition. Therefore, 
each queue  can be classified into the following four cases 
based on all possible combinations made by


  



 
 



  
   ≠



  
  ≠



 :

Case 1 :


  




 



  and 
   ≠



  
  ≠



  ∀

For Case 1,

  



〃
  




 



 
〃.

Because


   ≠



  
  ≠



 ,

queue  is not connected with any other queue and it is 
clear that = the true installation cost of queue 〃. 
<Figure 6> shows an example for case 1. This example - 
as well as other examples corresponding to other cases - is one 
of the possible dispatching results from the situation explained 
in <Figure 1>, without an off-line buffer. In <Figure 9>,


〃  and 


 
〃〃

which represents the total queue installation cost correctly.

Case 2 :


  



 
  ≠



  and 
 



  
   ≠



  ∀

For case 2,

  



〃
 
  ≠




〃
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Because


  ≠



  and 
   ≠



 ,

there is only one queue, denoted , connected with queue 
 and queue  belongs to either case 3 or case 4. 

Therefore,

  



〃



〃      (8)

 














〃 



〃 if  belongs to Case 






   ≠ 




〃 




〃 if  belongs to Case 

∴  











〃 if  belongs to Case 





   ≠ 




〃 if  belongs to Case    

If queue  belongs to case 3, there is only one queue, , 
that is connected with queue  and  〃 by (8). 
If queue  belongs to case 4, queue r is connected with a 
queue belonging either to case 2 or case 4. The sub-network 
of the associated problem network, composed of queues in-
cluding  and  and arcs connecting these queues takes form 
by sequentially connecting one queue in case 2, some queues 
in case 4, and one queue in case 3; the number of queues 
in case 4 ranges from zero to . By using (8~10), one 
can get 



 
〃, where ∈set of all queues in this 

sub-network. If this sub-network is interpreted such that 
queue  is used and all other queues in the sub-network are 
not used,   for each queue in this sub-network represents 
queue installation cost correctly. An illustrative example of 
case 2 is shown in <Figure 10>, where  〃; 
queue  is in case 3.
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<Figure 10> Example of Case 2

Case 3 : 


 



 
   ≠



 and 
  



  
  ≠



  ∀

For case 3,

  



〃
 
   ≠




〃 .

Because


   ≠



 and 
  ≠



  ,,

there is only one queue, , connected with queue  and queue 
 belongs to either case 2 or case 4. 

Therefore,

 














〃 



〃 if  belongs to Case 






〃 



    ≠ 




〃 if  belongs to Case 

     (9)

∴  











〃 i f  belongs to Case 


〃 



    ≠ 




〃 i f  belongs to Case    

If queue  belongs to case 2, there is only one queue, , 
that is connected with queue  and  〃 by 
(9). If queue  belongs to case 4,it is connected with a queue 
belonging either to case 3 or case 4. The sub-network com-
posed of queues that include  and  and arcs connecting 
these queues takes form by sequentially connecting one 
queue in case 3, some queues in case 4, and one queue in 
Case 2; the number of queues in case 4 ranges from zero 
to . By using (8~10), one can get 



 
〃, where 

∈ set of all queues in this sub-network. If this sub-network 
is interpreted such that queue  is used and all other queues 
in this sub-network are not used, then   for each queue 
in this sub-network represents the queue installation cost 
correctly. <Figure 11> shows an example of case 3 where 
 

〃; queue  is in case 2.
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<Figure 11> Example of Case 3

Case 4 : 


  ≠



 
   ≠



  and 
  



 
 



  ∀
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For Case 4,

  
 
  ≠




〃 

 
   ≠




〃

Because


   ≠



 
  ≠



 ,

queue  is connected from a queue,  , belonging to case 
2 or case 4 and is connected to a queue, , belonging to 
case 3 or case 4. 

Therefore,

  



〃



〃     (10)

 














〃 



〃 i f  belongs to Case 






〃 



    ≠ 




〃 i f  belongs to Case 

 














〃 



〃 i f  belongs to Case 






   ≠ 




〃 




〃 i f  belongs to Case 
∴  













〃 i f  belongs to Case  and  belongs to Case 






〃



  ≠ 




〃 i f  belongs to Case  and  belongs to Case 


〃




〃 



   ≠ 




〃 i f  belongs to Case  and  belongs to Case 






  ≠ 




〃 




   ≠ 




〃 i f  belongs to

Using similar reasoning to that for case 2 and case 3, one 
can think of a sub-network composed of queues including 
 and  , and  and arcs connecting these queues. In addition, 
one can conclude that   for each queue in this sub-network 
represents the queue installation cost correctly. An example 
of case 4 is shown in <Figure 12> where   


〃; queue s is in case 2 and queue t is in case 3.

q

1 2 3 4
JOBS

QUEUES
t

z
t 1 y 5s

5

s

wsq

x23x12 x34 x45

wqt

<Figure 12> Example of Case 4

Summarizing the discussions in the above four cases, the 
following facts can be derived :

•   and    will eventually cancel out 

to zero if one sums up    over all queues, resulting 

in 
 



= total queue installation cost.

• 
  ≠



  means that queue q is a queue with no as-

signed job, and 
  ≠



  means that queue q is a 

queue with at least one job assigned.

Note that if cost 


〃〃  (not 


〃〃 ) is associated 

with variable , then 
   ≠



  means that queue  

is a queue with no assigned job, and 
   ≠



  means 

that queue  is a queue with at least one job assigned.

Finally, one needs to calculate 
 



  


 

 






〃
  




 












 

 



 
   ≠




〃〃

 
  ≠




〃〃






 


 




〃

  




 



 


  




  ≠




〃〃

3.2.3 Model Formulation

Summarizing the discussion in section Ⅲ, a MIP model that 
explicitly considers the number of available queues and the 
attribute-dependent setup cost can be formulated as follows :

 
  




 




〃


 




〃

  




 








  




  ≠




〃〃

 


 




 



  ∀   ⋯      (11)


  




 



  ∀   ⋯      (12)


  



 
   ≠



  ∀  ⋯      (13)


 



 
  ≠



  ∀  ⋯      (14)

        ∈  ∀       (15)
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The first term in the objective function is the sum of the 
setup cost of all jobs in all downstream queues, as in the 
simple model in Section 3.1, while the second term is the 
cost of adding queue  and the third term is for canceling 
the cost correction due to over accounting in the second term. 
We also note that the objective function can be simplified 
as follows :


  




 




〃


 




〃

  




 





 


  




  ≠




〃〃 

  




 




〃




 




〃 

   ≠



 
  ≠





 


  




  ≠




〃〃


  




 




〃

 




〃


 




〃 
   ≠





 


 




〃 
  ≠



 
  




 




〃




 




〃 

   ≠



  
  ≠





Explanations for constraints (11~12) are given in Section 
3.1. For (13~15), newly added variables w are needed to identi-
fy unused queues. Again, (15) can be safely removed using 
the same reasoning as in Section 3.1 - total unimodularity. As 
a result, the problem again becomes the well-solved assign-
ment problem. Note that it is meaningless to differentiate the 
cost of installing downstream queues from the cost of using 
downstream queues. Differentiating these two costs is mean-
ingful only when it is possible to have a downstream queue 
that is not used in dispatching, which is not the case in our 
model - for any solution having an unused downstream queue, 
an equal or better solution having no unused downstream queue 
can be found. As a simple proof, for any solution having an 
unused queue, think of the modified solution with one job as-
signed to the unused queue. Because of the assumption that 
there is no setup cost for the first job assigned to a downstream 
queue, the modified solution has an equal or lesser total setup 
cost, depending whether or not the predecessor job and the 
successor job of the assigned job have the same attributes.

4. Contributions and Future Directions

In this paper, analytical models have been developed for 

a constrained sequencing problem with a diverging junction. 
We also modeled cases where the number of downstream 
queues needs to be decided simultaneously as well as cases 
where setup cost depends on both the job just finished and 
the job to be processed next. It has been proved that problems 
with practical size such as several hundred jobs can be solved 
quickly by these models.

Even though this paper did extensive analysis of diverging 
junction cases, no analysis has been made of off-line buffer 
cases, converging junction cases, and off-line buffer cases. 
If making an optimization model for these cases can be done 
successfully, a whole conveyor system can be analyzed sys-
tematically by dividing the system into each diverging or 
converging junction and applying the appropriate model to 
each junction. This way heuristics can be devised to obtain 
a feasible solution for the whole system and the performance 
of the heuristics may be good because the solution is com-
posed of local optimal solutions for each junction point.

Future research also needs to seek to incorporate other 
constraints such as those on cycle time limitations into the 
models. In the interview we conducted with the paint shop 
plant managers, reducing the number of color changeovers 
(i.e. increasing average color block size) was usually not on 
the highest priority in making production decisions. In other 
words, the solution optimized only for reducing the number 
of changeovers is very likely to be declined on implemen-
tation stage because performance of other criteria (that are 
considered more important than the number of changeovers) 
would be degraded greatly.

Finally, using diverging or converging junction alone may 
not be the best solution for all cases requiring re-sequencing, 
especially when full re-sequencing capability is desired. In 
fact, many manufacturing facilities use AS/RS or selectivity 
bank for re-sequencing purpose. However, since it is believed 
that the approach of using junctions for re-sequencing is al-
most always beneficial even with the existence of AS/RS 
or selectivity bank, the following two functionalities need 
to be included in the analytical models model discussed in 
this research :

•Optimal capacity of AS/RS or selectivity bank in facility 
design phase needs to be decided. Since AS/RS or selec-
tivity bank is expensive, minimizing its capacity is desired 
and use of junctions can greatly contribute to reducing re-
quired capacity while meeting re-sequencing requirements.
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•Optimal dispatching decision needs to be made on all di-
verging/converging conveyor junctions as well as on all 
diverging points (where jobs can go to AS/RS or to the 
next processing facility) and all converging points (where 
jobs can be received from AS/RS or from the previous 
processing facility). 
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