
Society of Korea Industrial and Systems Engineering Vol. 36, No.3 : 95-108, September 2013 ISSN : 2005-0461(print)
http://dx.doi.org/10.11627/jkise.2013.36.3.95 ISSN : 2287-7975(online)

Setup Minimization Problem in a Diverging Point
of the Conveyor System

Hyoungtae Kim*․Yong-Hee Han**†

*Department of Global Service management, Woosong University
**Department of entrepreneurship and Small Business, Soongsil University

컨베이어 시스템 분기점에서의 셋업 최소화 문제
김형태*․한용희**†

*우송대학교 글로벌서비스경영학부

**숭실대학교 벤처중소기업학과

The problem of constrained sequencing of a set of jobs on a conveyor system with the objective of minimizing setup cost
is investigated in this paper. A setup cost is associated with extra material, labor, or energy required due to the change of attributes
in consecutive jobs at processing stations. A finite set of attributes is considered in this research. Sequencing is constrained
by the availability of conveyor junctions. The problem is motivated by the paint purge reduction problem at a major U.S. automotive
manufacturer. We first model a diverging junction with a sequence-independent setup cost and predefined attributes as an assignment
problem and this model is then extended for a more general situation by relaxing the initial assumptions in various ways.

Keywords：Sequencing, Setup Minimization, Line Balancing

1. Introduction1)

1.1 Motivation
Today, most high-volume production systems may appear

to be old fashioned transfer lines but in fact have become
highly flexible, producing a large family of products such
as automobiles, electronics, and other consumer goods. One
objective of striving for flexibility is to reduce the setup cost
or time-to-respond to the ever-increasing diversity of custom-
er demands. However, even the most flexible systems may
still incur some setup cost in job changes. It is often desirable
to change the job sequence to further reduce the setup cost

Received 22 August 2013; Accepted 11 September 2013
†Corresponding Author : amade@ssu.ac.kr

and time.
Conveyors are the most popular material transfer mecha-

nism in high-volume production. Conveyors can transfer large
amounts of material with simple motion control and also pro-
vide buffer space. However, simple conveyor segments are
usually constrained to operate in a First-In-First-Out (FIFO)
principle. The sequence of materials on a simple conveyor
segment cannot be changed by the conveyor itself. To change
the sequence in a conveyor system, one needs special mecha-
nisms such as bypass, transfer, and spur. The use of special
mechanisms costs money and takes up floor space, especially
when transporting large jobs, making it important to mini-
mize their use and to maximize their utilization in operation.

However, diverging conveyor junction points and/or off-line
buffers (a conveyor itself can be considered as an on-line
buffer) can also be used to change the sequence. Junction

Hyoungtae Kim․Yong-Hee Han96

points and off-line buffers are frequently observed in manu-
facturing facilities and changing the control logic of such
equipment is relatively inexpensive. Therefore, using junc-
tion points or off-line buffers is preferred to using special
mechanisms because of the reduced initial investment cost
and floor space usage.

Use of junction points and off-line buffers to change the
job sequence can be found in the paint shop operation of
automobile manufacturing where reducing the number of car
color changes is desired. <Figure 1> shows a diverging junc-
tion with an off-line buffer where a single upstream conveyor
feeds a finite sequence of cars into two downstream convey-
ors that lead to the paint booth. Each car at the end of the
upstream conveyor is allowed to the visit off-line buffer be-
fore it is fed to the downstream conveyors. It is desirable
that color changes are minimized in the downstream conveyors.
In <Figure 1>, the number of setups to paint the five cars
can vary from zero to four, depending on the dispatch se-
quence at the diverging point. Note that the minimum num-
ber of setups becomes two if an off-line buffer does not
exist.

Incoming ConveyorOutgoing Conveyors

Offline BufferStation 2

Station 1

<Figure 1> Diverging Conveyor Example

Our sequencing problem can be defined by the following
two sets of elements. First, the design parameters include :

∙number of downstream queues at the junction
∙capacity of the upstream (and downstream) queues
∙capacity of the off-line buffer at the junction - if one

exists
∙discipline supported by the upstream queues, the down-

stream queues, and the off-line buffer, respectively
∙configuration of the junction.

Second, the known operational parameters include:
∙attributes of the jobs in each queue,
∙setup cost between consecutive jobs in the downstream

queue.

The operational decision is the dispatch sequence at the
junction. The setting of multiple upstream conveyors, multi-
ple downstream conveyors and/or storage buffers is com-
monly observed in many real-world manufacturing environ-
ments, including the case study we conducted, as shown in
<Figure 2>. In <Figure 2>, for the car at the end of any
upstream conveyor, this car may visit an off-line buffer, or
bypass an off-line buffer and go directly to one of the three
downstream conveyors. Since the car visiting off-line buffer
will be ready to be released to one of downstream queues
after some time, based on the queue discipline and transfer
time of the off-line buffer, the off-line buffer can be used
to further reduce the number of color changes.

<Figure 2> Multiple Incoming and Outgoing Conveyors
with an Off-line Buffer

While an optimal or a near-optimal solution may be found
by observation for the problem of minimizing the number
of color changes in <Figure 1>, finding an optimal solution
becomes very difficult when the number of incoming cars
increases in a more complex junction. The objective in pro-
duction also may include minimizing cycle times or work
in process. As can be seen, the minimization of setup alone
is rather complex and therefore this paper is restricted to part
of the conveyor system design and control with the objective
of minimizing setup costs. More specifically, we restrict our
attention to a constrained sequencing problem having one up-
stream (incoming) conveyor (queue) and no off-line buffer.

1.2 Problem Statement
Consider the problem of constrained sequencing of a finite

set of jobs on a conveyor system with the objective of mini-
mizing setup cost. A setup occurs whenever two consecutive
jobs do not share the same attribute at a processing station
served by the conveyor system. The conveyor system con-
sists of FIFO conveyor segments and special mechanisms
such as junctions and off-line buffers. A junction is an inter-

Setup Minimization Problem in a Diverging Point of the Conveyor System 97

face between M upstream conveyors and N downstream con-
veyors with or without an off-line buffer. It is assumed that
M = 1 and N > 1 with or without an off-line buffer. Time-
based measures such as cycle time are not considered.

The organization of this paper is as follows. Relevant liter-
ature is reviewed in Section 2. Related problems are defined
and analytical solution methodology is proposed in Section
3. Our research contributions are summarized and future re-
search directions are discussed in Section 4.

2. Literature Review

Morley and Schelberg [36], Morley [34], and Morley and
Ekberg [35] discussed algorithms for assigning trucks to paint
booths in a truck facility to minimize total make-span and
the number of paint flushes. They applied market-based bid-
ding algorithms to a GM plant and reported a 100% increase
in average color block size in their case study. Their heuristic
method turned out to have many advantages - easy to imple-
ment, robust with respect to schedule changes or machine
breakdowns, and effective reduction of paint changeovers.
Campos et al. [12] compared Morley and Ekberg’s mar-
ket-based approach with an ant-inspired response threshold
algorithm and used a genetic algorithm for getting parameter
values for the above two algorithms. Kittithreerapronchai and
Anderson [29] simulated a market-based algorithm as well as
an ant-inspired algorithm. They found that some parameters
in each algorithm could be removed since they are very in-
sensitive to the objective function value. All the above ap-
proaches use artificial intelligence (AI) techniques to tackle
the constrained sequencing problem. These AI approaches
are easy to implement and robust to system disruptions such
as paint booth breakdowns.

Atassi [3] proposed the use of temporary re-sequencing,
facilitated by an automated storage and retrieval system
(AS/RS). The AS/RS acts as a buffer that can store cars
before and after painting. Using this buffer, a plant can per-
turb the order for painting cars to create larger paint blocks
and then restore the original sequence after painting. Myron
[38] examined the effect of forming large blocks of cars with
the same color at an automotive assembly plant. Using dis-
crete event simulation, he showed that a simple block pro-
tection rule could significantly reduce setup cost when it is
coupled with pre- and post-sequencing using a fully flexible
AS/RS.

However, AI or simulation approaches have the drawback
of an inability to provide any optimality guarantee or upper
or lower bound. In optimization modeling approaches, Choe
et al. [16] was the first to model the constrained sequencing
problem as an optimization problem and to get a upper
bound. He used an AS/RS to increase the size of paint blocks
while maintaining a workload-balanced vehicle sequence.
More specifically, the problem is how to perturb the original
car flow around the vehicle painting station to reduce color
setup with the constraint of not violating maximum allowable
deviation from the original sequence. He modeled the prob-
lem as a traveling salesman problem with time windows,
and succeeded in reducing the model to a manageable size
and getting very tight bounds - empirically within 2.5% of
optimality - by exploiting the special problem structure. He
also discussed various relaxations of the problems for getting
a near-optimal solution within a reasonable time. To our
knowledge, he was the first to model the color change reduc-
tion problem using an optimization formulation. However,
his model is different from the models in this research in
that he used an AS/RS while we use diverging conveyors
as well as off-line buffer to re-sequence the incoming cars.

A similar setup reduction problem with constrained se-
quencing occurs in rail classification yards. In rail classi-
fication yards, freight cars are separated, sorted according
to their final destination, and assembled to form new out-
bound train blocks. Because the classification process re-
quires considerable resources, one of the objectives is to min-
imize reclassification. Typically, cars with different final des-
tinations but sharing some initial portion of their trips are
assembled into blocks. In each rail classification yard, blocks
are built and staged on classification tracks where they wait
for the departure of an outbound train. The list of potential
blocks that may go into each outbound train is specified by
the makeup policy. Therefore, one needs to send each to
the appropriate classification track based on the sorting
strategy. In this rail classification problem, if a block at the
converging junction fails to join the desired train, it re-
circulates back to the diverging junction (called ‘re-hump-
ing’). Therefore, the rail classification problem can be re-
garded as a special case of the constrained sequencing prob-
lem with a diverging junction and a diverging/converging
junction shown in <Figure 3>.

The rail classification problem is similar to the constrained
sequencing problem to be addressed in this research in terms
of the decisions to be made. However, it has two different

Hyoungtae Kim․Yong-Hee Han98

. . .

<Figure 3> The Rail Classification Problem as a Special
Case of the Constrained Sequencing Problem

features as follows. First, departing and arriving train schedule
constraints as well as the capacity of each classification track
should be explicitly considered. Second, the number of chang-
eovers should be counted on the rail for re-humping, not
on the rail exiting the classification yard because attaching
any ‘wrong’ car in a departing train is now allowed.

This topic was explored by Siddiqee [43], who compared
four sorting and train formulation schemes in a railroad clas-
sification yard. Yagar et al. [47] suggested a dynamic pro-
gramming approach as well as a screening technique to opti-
mize sorting and assembly operations. The relative perform-
ance of different multistage sorting strategies were inves-
tigated by Daganzo et al. [21]. Each classification track is
assigned several blocks and cars should be resorted during
train formulation in multistage sorting. They derive equations
for the service time per car of triangular sorting in classi-
fication yards. Three papers written by Daganzo (Daganzo [18],
Daganzo [19], and Daganzo [20]) also analyze and compare
different classification strategies and give expressions for the
switching work and space requirements. Dynamic blocking,
in which the assignment of blocks to classification tracks
is allowed to vary through time, is considered in the last
two papers. See Assad [1], Assad [2], Choe et al. [16], and
Cordeau et al. [17] for a general review of rail transportation
problems. However, because the rail classification problem
considers inherent differences between the rail classification
problem and the constrained sequencing problem, all sorting
strategies discussed in the above cited papers are unrealistic
to apply to the constrained sequencing problem (either with
a diverging junction only, or with a random-access off-line
buffer only) that are modeled in this dissertation.

Another decision-making problem can be found in the
Order Accumulation / Sortation System (OAS) in a typical
automated distribution center. In a common order picking
system design, the sortation functions are separated from the
order picking functions. To retrieve the items of an order
from the warehouse, picking systems are used and many of

these systems use ‘pick-wave’ where a group of orders is
picked simultaneously with each picker being responsible for
picking a single group of items for all the orders in a wave.
Such a wave approach has been found to be more efficient
than a serial picking scheme (where each picker selects all
the items for one or more orders) in many systems. However,
wave picking requires further sorting that is not required by
serial picking systems. After retrieval by the sorting system
from the warehouse, items move as a wave to OAS where
they are assigned to one of shipping lanes for sortation into
orders. Assignments are made based on the adopted lane as-
signment strategy and if recirculation is allowed, an item re-
circulates OAS until a shipping lane is assigned to that item.
Therefore, identifying the optimal lane assignment strategy
can be considered as a special case of the constrained se-
quencing problem with a diverging junction and an off-line
buffer (i.e. recirculating conveyor) as in <Figure 4>.

. . .

Shipping Lanes

Recirculating Conveyor

From Picking System

<Figure 4> Lane Assignment Problem as a Special Case
of the Constrained Sequencing Problem

However, like the rail classification problem, the lane as-
signment problem in OAS has a few characteristics different
from the constrained sequencing problem as follows. First,
capacity of each shipping lane needs to be explicitly con-
sidered. Second, an order may be pre-assigned to a specific
shipping lane (e.g. a shipping lane dedicated for FedEx).
Finally, if an order is not pre-assigned, usually a nonempty
lane is dedicated to an order until the lane receives all items
of that order. As a result, there are two common categories
of lane assignment strategies - fixed priority rules and the
next available rules (i.e. incidental rules). Fixed priority rules
include such popular rules as ‘sort the largest (or smallest)
orders first’ while the next available rules assign the next
available lane to the item belonging to an order that has not
yet been assigned any lane.

Research on OAS is relatively scarce even though there
exist many implementations of such systems in industry (see
Johnson and Lofgren [28], Gould [22], Gould [23], Horrey
[26], Schwind [41], and Witt [46]). In one of the first papers

Setup Minimization Problem in a Diverging Point of the Conveyor System 99

to analyze OAS, Bozer and Sharp [9] used simulation to eval-
uate the throughput of OAS as a function of the number and
length of lanes, the presence of a recirculation conveyor, the
control system, and the induction capacity with the assump-
tion that each lane is assigned to one order. Bozer et al. [8]
also used simulation to examine various line assignment strat-
egies as well as wave release strategies under the assumption
that there are more orders than lanes in OAS, finding in-
cidental rules consistently outperforms fixed priority rules.
Johnson [27] proves this result by an analytical model for
OAS. Choe [13], Choe and Sharp [14], Choe et al. [15], and
Choe et al. [16] deal with questions on the design of both the
picking system and its relationship to OAS. They developed
approximate queueing models for the picking and OAS sub-
systems and incorporated those models into an overall analy-
sis of the effect of picking schemes. Meller [32] developed
an algorithm for finding optimal lane assignment strategy
when truck-loading requirements governs the sequence of or-
der sortation. Customer orders are reverse loaded to company
owned trucks with pre-specified delivery routes in the appro-
priate sequence based on the truck’s route. A binary integer
program is formulated and solved and this model assigns
trucks and orders to shipping lanes with the objective of mini-
mizing the total sorting time. Apart from the research specific
to OAS, research on conveyor theory has been widely con-
ducted (Muth [37] for a general review and Bastani [4] for
recent works). However, all of those works deal with issues
on material flow on the conveyor system (e.g. throughput, num-
ber of loading/unloading stations, time delay, and capacity).

Despite the fact that there is a large body of literature on
sequencing assembly lines, most work adopts a static ap-
proach as a basic assumption of the problem (see Baybars [5]
and Yano and Bolat [48] for a general review) and does not
consider the constraints imposed by the material handling de-
vices, such as strict FIFO constraints on a conveyor. The pri-
mary concern of a static approach is how to determine a sin-
gle job sequence for the entire line for an available or recur-
ring set of jobs, whereas the objective is, typically, to balance
workload among the different processing departments (see Lee
and Vairaktarakis [31] and Yano and Rachamadugu [49]).
However, a dynamic approach would change the sequence
on the fly for a given line without mechanical sequencing
constraints.

Few papers, especially those that deal with mixed assem-
bly lines, consider sequence-dependent setups. For example,
Burns and Daganzo [11] and Bolat et al. [7] consider lines

where different jobs have different attributes or options and
a setup occurs whenever two jobs with different options fol-
low each other. They develop heuristics for sequencing these
jobs with the objective of minimizing total setup cost.
However, they do not consider the issue of constrained se-
quencing and assume that jobs have unique attributes. The
issue of sequencing jobs with options is also discussed by
Yano and Rachamadugu [49] that considers cases where jobs
with different options have different processing times.
However, they assume that there is no setup between jobs
with different options.

The issue of sequence-dependent setups has been addressed
extensively in the traditional scheduling literature. Most such
papers consider a single machine problem with multiple jobs,
where individual jobs may belong to different families. A set-
up occurs whenever two consecutive jobs belong to different
families. The individual jobs, irrespective of family member-
ship, may carry different weights and have different due dates.
The objective is to determine a sequence of jobs that optimizes
one or more performance measures - typically, a function of
job completion time such as maximum lateness, weighted
completion time, or weighted tardiness. Examples of this work
include Monma and Potts [33], Potts and Wassenhove [40],
Unal and Kiran [44], and Webster and Baker [45]. In general,
scheduling with sequence-dependent setups is NP-hard, with
polynomial algorithms available only for a few special cases
(see Bruno and Downey [10] and Laporte [30]).

In all of the above literature on scheduling, mixed assembly
line, or sequence-dependent setups, it is assumed that there
is full flexibility as to how jobs are sequenced - i.e. not con-
strained by the sequence change mechanism. It is also as-
sumed that setups are family- or lot-specific, with family or
lot membership being known. The problem discussed in this
paper is different from all those in above literature in two
aspects. First, it is assumed that there is only constrained
flexibility in how jobs can be re-sequenced. Second, some
flexibility is allowed in assigning attributes that determine
family membership among jobs.

3. Analytical Modeling

3.1 Constant Setup Cost with a Fixed Number of
Downstream Queues

The simplest diverging junction is a single upstream queue

Hyoungtae Kim․Yong-Hee Han100

feeding  identical downstream queues. The problem is to
decide which job is sent to which downstream queue to mini-
mize total setup cost on all downstream queues. We assume
as follows :

1. The number of downstream queues is fixed.
2. Setup cost is independent of job attributes and downstream

queues.
3. The number of jobs in the upstream queue is fixed.
4. The attributes of all jobs in the upstream queue are fixed.
5. The capacity of each downstream queue is unlimited.
6. There is no setup cost for the first and last jobs sent to

each downstream queue.
7. FIFO discipline is applied on all queues.
8. All setups are done instantaneously - no setup time.

Assumption 6 means that if all jobs in a downstream queue
have identical attributes, then no setup cost is assumed for
that queue. This assumption can be relaxed by adding con-
straints that explicitly consider setup costs for the first and
last jobs. Assumption 1 and 2 are relaxed in Section 3.2
as the model is extended. We also need to introduce the
following notations :

  upstream queue
  number of downstream queues
  number of jobs in 

  changeover cost a constant for each changeover
 











 i f the attribute of  job in  is different from
the attribute of  job in 

 otherwise
 









 i f  job in is located right before the  job
in  ona downstream queue

 otherwise
 









 i f   job in is the last item to be sent to a
downstream queue

 otherwise
 









 i f  job in is the last item to be sent to a
downstream queue

 otherwise

One can find the following properties of the constrained
sequencing problem.

Property 1.1 : Dispatching Constraint
The FIFO discipline of  prohibits the   job in U from
being dispatched before the  job in U is dispatched.

Property 1.2 : Conservation of Precedence Relationship
Due to Property 1.1, the precedence relationship among jobs

in  is maintained in each downstream queue. That is, if the
  job precedes the   job in  and both are dispatched
to the same downstream queue, then the   job precedes
the   job in the downstream queue.

The above two properties restrict the range of  so that
index  is always less than . In addition, if each job as
well as each downstream queue is represented as a node in
a network, then represent each feasible arc in this network
can be associated with ,  , or  . Furthermore, the defi-
nitions of ,  , and  require that each node has exactly
one incoming arc and one outgoing arc. This way the con-
strained sequencing problem can be transformed as a network
problem. <Figure 5> shows a possible dispatching result
from the example in <Figure 1>, where <Figure 6> is the
associated network representation.

Incoming ConveyorOutgoing Conveyors

Station 2

Station 1

 <Figure 5> A Possible Dispatching Result for the
Example in <Figure 1>

b

1 2 3 4
JOBS

QUEUES
a

z
a1

zb2 y 5by4a

5

x23

x14
x35

 <Figure 6> Network Representation Associated with
<Figure 5>

The network described above can be interpreted such that
if a job is directly connected with another job by variable
x, then these two jobs are sent to the same downstream queue
and are adjacent to each other in that queue. For the first
job sent to a downstream queue, the incoming arc to the
associated node is represented by z. For the last job, the
outgoing arc from the associated node is represented by y.
In <Figure 6>, a downstream queue has jobs 1 and 4, and
another downstream queue has jobs 2, 3, and 5, in sequence.
Then as discussed in Han [25] and Han [24], the above net-

Setup Minimization Problem in a Diverging Point of the Conveyor System 101

work representation can be transformed into the following
mixed-integer programming (MIP) formulation.

Minimize 
  




 


   (1)

subject to


 




 



  ∀ (2)


  




 



  ∀ (3)


  



  ∀ (4)


 



  ∀ (5)

,  , , ’∈  ∀    (6)

The objective function (1) is the total setup cost of all
jobs after dispatching. The Property 1.1 and 1.2 are ensured
by not defining variables  if index  is equal to or bigger
than . (2) ensures that any job  is assigned a successor
job among all jobs after the  job in , or is assigned
as the last job in a downstream queue. (3) ensures that any
job  is assigned a predecessor job among all jobs preceding
the   job in , or is assigned as the first job in a down-
stream queue. The intention of (4) and (5) is that each down-
stream queue is assigned exactly one first job and one last
job, respectively. Note that if the first job is the same as
the last job, then only one job is assigned to that downstream
queue. The unintended result of (4) and (5) is that each
downstream queue is utilized - i.e. at least one job is assigned
- even when it is not necessary. In reality, achieving the
minimum setup cost may not require all  queues to be
utilized. To find the minimum number of queues for achiev-
ing the minimum cost, one may try to find an optimal sol-
ution with , , , … queues until the minimum
cost starts to increase. Another possible way of simulta-
neously identifying the number of queues to be used as well
as the minimum cost is explained in Section 3.2.

Constraint (6) is added because the meaning of the deci-
sion variables demands integrality. However, (6) can be re-
moved without loss of generality because of the following
reasoning. A matrix is called totally unimodular if the deter-
minant of every square submatrix formed from it has determi-
nant -1, 0, or +1 (Bazaraa et al. [6]). If our MIP formulation
is represented as ‘maximize c subject to    where 

is a binary variables vector’, then  is a node-arc incidence
matrix of a network because our formulation can be repre-
sented as a network. Note that the node-arc matrix is com-
posed of (0, 1, –1), has two no-zero entries in each column,
and the summation of each column equals zero.

In addition, if a matrix composed of (0, 1, –1) has no
more than two no-zero entries in each column and the sum-
mation of all elements in column  equals zero if column
 contains two no-zero coefficients, then this matrix is totally
unimodular (Nemhauser and Wolsey [39]). Therefore,  is
totally unimodular because  is composed of (0, 1, –1),
has two no-zero entries in each column, and the summation
of each column equals zero. Furthermore, if  is totally un-
imodular and each element of  is integer-valued, then the
optimal solution assigns all variables integer values (see
Shapiro [42] for a proof). Therefore, (6) can be removed.
With (6) removed, the formulation reduces to the well-solved
assignment problem. The removal of (6) without loss of gen-
erality can also be proved by showing a one-to-one corre-
spondence relationship between two equally sized sets com-
posed of all jobs and queues as illustrated in <Figure 7>.

b3 4
JOBS QUEUES

a5

b3 4

JOBS QUEUES

a5

 <Figure 7> Assignment Problem Example of 3 Jobs and
2 Queues

Because the Hungarian method can solve the assignment
problem optimally in   , modeling it as an assignment
problem - compared to modeling it as an MIP or LP problem
- has advantages in terms of speed and implementation cost.
For speed, practical problems can be solved with a few hun-
dred jobs to optimality in several seconds, allowing for
on-the-spot optimal control in many applications. For im-
plementation cost, dispatching logic in diverging or converging
junctions of conveyors is usually implemented by Programm-
able Logic Controllers (PLCs). A PLC has limited memory,
usually a few megabytes, and CPU power. Therefore, in most
cases implementing an MIP- or LP-based algorithm in PLC
environment requires an external system - where the MIP/LP

Hyoungtae Kim․Yong-Hee Han102

solver is loaded - and a network module connecting the ex-
ternal system and PLC, causing high hardware and software
costs. In contrast, implementing an assignment-problem-based
algorithm can save implementation time and cost since it
can be implemented in a PLC standalone environment and
is relatively easy to program and debug.

3.2 Attribute Dependent Setup Cost with a
Variable Number of Downstream Queues

3.2.1 Introduction

In reality, setup cost often depends on downstream queues
and the attributes of the job to be processed. For example,
the setup cost for color change in the paint shop usually
depends on the paint color to be changed. In general, setup
cost depends on both the job just finished and the job to
be processed next. In addition, in the simple constrained se-
quencing problem model discussed in section 3.1., each
downstream queue is forced to have at least one job. In the
conveyor system design stage, the number of downstream
conveyors is a design parameter. The cost of an additional
conveyor, processing station, and extra floor space can out-
weigh the cost savings from setup reduction. In system oper-
ation, utilizing each additional downstream queue and work-
station may incur extra costs for the labor, energy, and initial
process setup. At one extreme, if the number of downstream
queues is equal to one, no re-sequencing is possible. At the
other extreme, if the number of queues is equal to the number
of attributes, no setup cost is necessary because each queue
can have jobs with identical attributes. Therefore, for a given
set of jobs and cost values, if  and  denote the optimum
number of downstream queues and the number of attributes,
respectively, then the following condition holds :

≤≤ (7)

Based on (7), the maximum number of downstream queues
one needs to consider is . Each downstream queue is des-
ignated to a specific attribute if  queues are available for
use. However, when the queue installation cost is considered,
the optimum number of downstream queues is a variable and
is often less than . The rationale here is to start with max-
imum , then to decide which queue to use and which queue
not to use to minimize total cost. First, define the cost param-
eters as follows :

 ′ = changeover cost when  job in  is located

right before the   job in  on a downstream queue (for
the case that a specific attribute is given to each job in 
and it is known in advance)

 ′= cost of installing downstream queue q

Recall from Section 3.1., constraints (4~5) restrict each
queue to exactly one incoming unit flow and one outgoing
unit flow, shown in <Figure 8>.

JOBS

QUEUES

... ...

queue q

å
=

N

i
iqy

1
å
=

N

j
qjz

1

 <Figure 8> Part of the Network Representation for the
Model in Section 3.1

A side effect of these constraints is that each queue is
assigned at least one job. In this Section, the number of
queues to be constructed is an integer and some queues are
allowed to have no assigned job. The challenge is to allow
some queues have no assigned job and, at the same time,
to maintain a node-arc model.

Although there might be different ways of modeling such
a situation, the approach taken here is to use all  queue
nodes. Virtual arcs  are defined to designate the outgoing
flow from the unused queue node  to other queue node.
Similarly, virtual arcs  are defined to designate the incom-
ing flow to queue node  -  may or may not be used - to
go from other queue node. The extended queue node in this
definition is depicted in <Figure 9>.

JOBS

QUEUES

... ...

... ...
queue k

1

N

ik
i

y
=
å

1

N

kj
j

z
=
å

1

K

kj
j

w
=
å

1

K

ik
i

w
=
å

 <Figure 9> Extension the Network Representation in
<Figure 7>

For each queue node, constraints


  



 
   ≠



  and 
 



 
  ≠



 

are added. The former restricts a queue to have an entering
arc either from a job, or from another queue. The latter sim-

Setup Minimization Problem in a Diverging Point of the Conveyor System 103

ilarly restricts the exiting arc. With the addition of virtual arcs
and the above two constraints, a node-arc model can be built
for the problem.

3.2.2 Installation Cost Calculation

The fact that no job is assigned to a queue with virtual
links complicates the calculation for installation cost. Furth-
ermore, a queue with or without an assigned job may be
connected with other queues via virtual arcs. One way to
handle this is to assign half of the installation cost to each
arc connecting a job and a queue.

In this way, if queue  is connected from a job and con-
nects to a job, the total cost becomes correct. If queue 
is connected from queue  (≠) and connects to a job,
an adjustment need to be made by associating cost




〃〃 to virtual arc  . This treatment makes up the

installation cost for queue  (


〃



〃


〃) which can-

cels out the installation cost for queue  (


〃



〃
).

Before the other cases are explained, the auxiliary in-
stallation cost associated with queue , denoted as  , is
defined.  represents the summation of costs of the arcs
that start from or end at queue . Then  is defined as
follows :

  



〃
  




 



 



 



 
   ≠




〃〃

 
  ≠




〃〃






 




〃
  




 



 

 
  ≠




〃〃



 
  ≠




〃〃

Note that terms




 
   ≠




〃〃

 
  ≠




〃〃






are divided by 2 because these terms are double-counted
when  is summed for all queues for use in the MIP
formulation. Since queues are interconnected by variable  ,
 inevitably takes the following recursive form :

 = true installation cost of queue   
   , where   denotes a function.

It will be shown that all     and   
terms in the above equation eventually cancel out if one sums
 over all queues, resulting in 



= total queue in-

stallation cost.

First, from


  



 
  ≠



  and


 



 
  ≠



 , one can derive

≤
  



  
   ≠



 
 



  
  ≠



≤

and all these variables are integers by definition. Therefore,
each queue  can be classified into the following four cases
based on all possible combinations made by


  



 
 



  
   ≠



  
  ≠



 :

Case 1 :


  




 



 and 
   ≠



  
  ≠



  ∀

For Case 1,

  



〃
  




 



 
〃.

Because


   ≠



  
  ≠



 ,

queue  is not connected with any other queue and it is
clear that = the true installation cost of queue 〃.
<Figure 6> shows an example for case 1. This example -
as well as other examples corresponding to other cases - is one
of the possible dispatching results from the situation explained
in <Figure 1>, without an off-line buffer. In <Figure 9>,


〃 and 


 
〃〃

which represents the total queue installation cost correctly.

Case 2 :


  



 
  ≠



 and 
 



  
   ≠



  ∀

For case 2,

  



〃
 
  ≠




〃

Hyoungtae Kim․Yong-Hee Han104

Because


  ≠



 and 
   ≠



 ,

there is only one queue, denoted , connected with queue
 and queue  belongs to either case 3 or case 4.

Therefore,

  



〃



〃 (8)

 














〃 



〃 if  belongs to Case 






   ≠ 




〃 




〃 if  belongs to Case 

∴  











〃 if  belongs to Case 





   ≠ 




〃 if  belongs to Case 

If queue  belongs to case 3, there is only one queue, ,
that is connected with queue  and  〃 by (8).
If queue  belongs to case 4, queue r is connected with a
queue belonging either to case 2 or case 4. The sub-network
of the associated problem network, composed of queues in-
cluding  and  and arcs connecting these queues takes form
by sequentially connecting one queue in case 2, some queues
in case 4, and one queue in case 3; the number of queues
in case 4 ranges from zero to . By using (8~10), one
can get 



 
〃, where ∈set of all queues in this

sub-network. If this sub-network is interpreted such that
queue  is used and all other queues in the sub-network are
not used,  for each queue in this sub-network represents
queue installation cost correctly. An illustrative example of
case 2 is shown in <Figure 10>, where  〃;
queue  is in case 3.

r

1 2 3 4
JOBS

QUEUES
a

z
a1

z
r2 y 5qy4a

5

x14
x35

q

wqr

x23

<Figure 10> Example of Case 2

Case 3 :


 



 
   ≠



 and 
  



  
  ≠



  ∀

For case 3,

  



〃
 
   ≠




〃 .

Because


   ≠



 and 
  ≠



  ,,

there is only one queue, , connected with queue  and queue
 belongs to either case 2 or case 4.

Therefore,

 














〃 



〃 if  belongs to Case 






〃 



    ≠ 




〃 if  belongs to Case 

 (9)

∴  











〃 i f  belongs to Case 


〃 



    ≠ 




〃 i f  belongs to Case 

If queue  belongs to case 2, there is only one queue, ,
that is connected with queue  and  〃 by
(9). If queue  belongs to case 4,it is connected with a queue
belonging either to case 3 or case 4. The sub-network com-
posed of queues that include  and  and arcs connecting
these queues takes form by sequentially connecting one
queue in case 3, some queues in case 4, and one queue in
Case 2; the number of queues in case 4 ranges from zero
to . By using (8~10), one can get 



 
〃, where

∈ set of all queues in this sub-network. If this sub-network
is interpreted such that queue  is used and all other queues
in this sub-network are not used, then  for each queue
in this sub-network represents the queue installation cost
correctly. <Figure 11> shows an example of case 3 where
 

〃; queue  is in case 2.

q

1 2 3 4
JOBS

QUEUES
a

z
a1

z
q2 y 5py4a

5

x14
x35

p

wpq

x23

<Figure 11> Example of Case 3

Case 4 :


  ≠



 
   ≠



 and 
  



 
 



  ∀

Setup Minimization Problem in a Diverging Point of the Conveyor System 105

For Case 4,

  
 
  ≠




〃 

 
   ≠




〃

Because


   ≠



 
  ≠



 ,

queue  is connected from a queue,  , belonging to case
2 or case 4 and is connected to a queue, , belonging to
case 3 or case 4.

Therefore,

  



〃



〃 (10)

 














〃 



〃 i f  belongs to Case 






〃 



    ≠ 




〃 i f  belongs to Case 

 














〃 



〃 i f  belongs to Case 






   ≠ 




〃 




〃 i f  belongs to Case 
∴  













〃 i f  belongs to Case  and  belongs to Case 






〃



  ≠ 




〃 i f  belongs to Case  and  belongs to Case 


〃




〃 



   ≠ 




〃 i f  belongs to Case  and  belongs to Case 






  ≠ 




〃 




   ≠ 




〃 i f  belongs to

Using similar reasoning to that for case 2 and case 3, one
can think of a sub-network composed of queues including
 and  , and  and arcs connecting these queues. In addition,
one can conclude that  for each queue in this sub-network
represents the queue installation cost correctly. An example
of case 4 is shown in <Figure 12> where  


〃; queue s is in case 2 and queue t is in case 3.

q

1 2 3 4
JOBS

QUEUES
t

z
t 1 y 5s

5

s

wsq

x23x12 x34 x45

wqt

<Figure 12> Example of Case 4

Summarizing the discussions in the above four cases, the
following facts can be derived :

•  and   will eventually cancel out

to zero if one sums up  over all queues, resulting

in 
 



= total queue installation cost.

• 
  ≠



  means that queue q is a queue with no as-

signed job, and 
  ≠



  means that queue q is a

queue with at least one job assigned.

Note that if cost 


〃〃 (not 


〃〃) is associated

with variable , then 
   ≠



  means that queue 

is a queue with no assigned job, and 
   ≠



  means

that queue  is a queue with at least one job assigned.

Finally, one needs to calculate 
 






 

 






〃
  




 












 

 



 
   ≠




〃〃

 
  ≠




〃〃






 


 




〃

  




 



 


  




  ≠




〃〃

3.2.3 Model Formulation

Summarizing the discussion in section Ⅲ, a MIP model that
explicitly considers the number of available queues and the
attribute-dependent setup cost can be formulated as follows :

 
  




 




〃


 




〃

  




 








  




  ≠




〃〃

 


 




 



  ∀   ⋯  (11)


  




 



  ∀   ⋯  (12)


  



 
   ≠



  ∀  ⋯  (13)


 



 
  ≠



  ∀  ⋯  (14)

        ∈ ∀   (15)

Hyoungtae Kim․Yong-Hee Han106

The first term in the objective function is the sum of the
setup cost of all jobs in all downstream queues, as in the
simple model in Section 3.1, while the second term is the
cost of adding queue  and the third term is for canceling
the cost correction due to over accounting in the second term.
We also note that the objective function can be simplified
as follows :


  




 




〃


 




〃

  




 





 


  




  ≠




〃〃 

  




 




〃




 




〃 

   ≠



 
  ≠





 


  




  ≠




〃〃


  




 




〃

 




〃


 




〃 
   ≠





 


 




〃 
  ≠



 
  




 




〃




 




〃 

   ≠



  
  ≠





Explanations for constraints (11~12) are given in Section
3.1. For (13~15), newly added variables w are needed to identi-
fy unused queues. Again, (15) can be safely removed using
the same reasoning as in Section 3.1 - total unimodularity. As
a result, the problem again becomes the well-solved assign-
ment problem. Note that it is meaningless to differentiate the
cost of installing downstream queues from the cost of using
downstream queues. Differentiating these two costs is mean-
ingful only when it is possible to have a downstream queue
that is not used in dispatching, which is not the case in our
model - for any solution having an unused downstream queue,
an equal or better solution having no unused downstream queue
can be found. As a simple proof, for any solution having an
unused queue, think of the modified solution with one job as-
signed to the unused queue. Because of the assumption that
there is no setup cost for the first job assigned to a downstream
queue, the modified solution has an equal or lesser total setup
cost, depending whether or not the predecessor job and the
successor job of the assigned job have the same attributes.

4. Contributions and Future Directions

In this paper, analytical models have been developed for

a constrained sequencing problem with a diverging junction.
We also modeled cases where the number of downstream
queues needs to be decided simultaneously as well as cases
where setup cost depends on both the job just finished and
the job to be processed next. It has been proved that problems
with practical size such as several hundred jobs can be solved
quickly by these models.

Even though this paper did extensive analysis of diverging
junction cases, no analysis has been made of off-line buffer
cases, converging junction cases, and off-line buffer cases.
If making an optimization model for these cases can be done
successfully, a whole conveyor system can be analyzed sys-
tematically by dividing the system into each diverging or
converging junction and applying the appropriate model to
each junction. This way heuristics can be devised to obtain
a feasible solution for the whole system and the performance
of the heuristics may be good because the solution is com-
posed of local optimal solutions for each junction point.

Future research also needs to seek to incorporate other
constraints such as those on cycle time limitations into the
models. In the interview we conducted with the paint shop
plant managers, reducing the number of color changeovers
(i.e. increasing average color block size) was usually not on
the highest priority in making production decisions. In other
words, the solution optimized only for reducing the number
of changeovers is very likely to be declined on implemen-
tation stage because performance of other criteria (that are
considered more important than the number of changeovers)
would be degraded greatly.

Finally, using diverging or converging junction alone may
not be the best solution for all cases requiring re-sequencing,
especially when full re-sequencing capability is desired. In
fact, many manufacturing facilities use AS/RS or selectivity
bank for re-sequencing purpose. However, since it is believed
that the approach of using junctions for re-sequencing is al-
most always beneficial even with the existence of AS/RS
or selectivity bank, the following two functionalities need
to be included in the analytical models model discussed in
this research :

•Optimal capacity of AS/RS or selectivity bank in facility
design phase needs to be decided. Since AS/RS or selec-
tivity bank is expensive, minimizing its capacity is desired
and use of junctions can greatly contribute to reducing re-
quired capacity while meeting re-sequencing requirements.

Setup Minimization Problem in a Diverging Point of the Conveyor System 107

•Optimal dispatching decision needs to be made on all di-
verging/converging conveyor junctions as well as on all
diverging points (where jobs can go to AS/RS or to the
next processing facility) and all converging points (where
jobs can be received from AS/RS or from the previous
processing facility).

References
[1] Assad, A.A., Models for rail transportation. Transporta-

tion Research, 1980, Vol. 14, No. 3, p 205-220.
[2] Assad, A.A., Analytical models in rail transportation :

An annotated bibliography, INFOR, 1981, Vol. 19, p
59-80.

[3] Atassi, F.R., Implementation of block painting in Ford's
in-line vehicle sequencing environment (MS Thesis).
System Design and Management Program. Cambridge,
MIT, 1996.

[4] Bastani, A.S. Closed-loop conveyor systems with break-
down and repair of unloading stations. IIE Transac-
tions, 1990, Vol. 22, No. 4, p 351-360.

[5] Baybars, I., A survey of exact algorithms for the simple
assembly line balancing problem. Management Science,
1986, Vol. 32, p 909-932.

[6] Bazaraa, M.S., Jarvis, J.J., and Sherali, H.D., Linear
Programming and Network Flows, John Wiley and Sons,
1990.

[7] Bolat, A., Savsar, M., and Al-Fawzan, M.A., Algori-
thms for real-time scheduling of jobs on mixed model
assembly lines. Computers and Operations Research, 1994,
Vol. 21, p 487-498.

[8] Bozer, Y.A., Quiroz, M.A., and Sharp, G.P., An evalua-
tion of alternative control strategies and design issues
for automated order accumulation and sortation systems.
Material Flow, 1988, Vol. 4, p 265-282.

[9] Bozer, Y.A. and Sharp, G.P., An empirical evaluation
of general purpose automated order accumulation and
sortation system used in batch picking. Material Flow
1985, Vol. 2, p 111-131.

[10] Bruno, J. and Downey, P., Complexity of task sequenc-
ing with deadlines, setup times, and changeover costs.
SIAM Journal of Computing, 1978, Vol. 7, p 394-404.

[11] Burns, L.D. and Daganzo, C.F., Assembly line job se-
quencing principles. International Journal of Produc-
tion Research, 1987, Vol. 25, p 71-99.

[12] Campos, M., Bonabeau, E., and Theraulaz, G., Dynamic

scheduling and division of labor in social insects. Adaptive
Behavior, 2001, Vol. 8, No. 2, p 83-92.

[13] Choe, K.I., Aisle-based order pick systems with batch-
ing, zoning, and sorting (Ph. D. Thesis). School of Indu-
strial and Systems Engineering. Atlanta, GA, Georgia
Institute of Technology, 1990.

[14] Choe, K.I. and Sharp, G.P., Small parts order picking :
design and operations, Material Handling Research
Center Technical Report MHRC-TR-89-07, Georgia
Institute of Technology, Atlanta, GA, 1991.

[15] Choe, K.I. and Sharp, G.P., Performance estimation of
an automated sorting system. Proceedings of the 12th
International Conference on Automation in Warehousing,
1992, p 198-204.

[16] Choe, K.I. and Sharp, G.P., Aisle-based order pick sys-
tems with batching, zoning, and sorting. Progress in
Material Handling Research, Material Handling Institute,
Charlotte, 1993, p 245-276.

[17] Cordeau, J.F., Toth, P., and Vigo, D., A Survey of opti-
mization models for train routing and scheduling. Trans-
portation Science, 1998, Vol. 32, No. 4, p 380-404.

[18] Daganzo, C.F., Static blocking at railyards : sorting im-
plications and track requirements. Transportation Science,
1986, Vol. 20, p 189-199.

[19] Daganzo, C.F., Dynamic blocking for railyards, part I.
homogeneous traffic. Transportation Research, 1987a,
21B, p 1-27.

[20] Daganzo, C.F., Dynamic blocking for railyards, part II.
heterogeneous traffic. Transportation Research, 1987b,
21B, p 29-40.

[21] Daganzo, C.F., Dowling, R.G., and Hall, R.W., Rail-
road classification yard throughput : the case of multi
-stage triangular sorting. Transportation Research, 1983,
Vol. 17, No. 2, p 95-106.

[22] Gould, L., New Sortation systems cuts postal costs $2
million per year. Modern Materials Handling, 1991,
Vol. 46, No. 10, p 54-55.

[23] Gould, L., Sortation system doubles output capacity.
Modern Materials Handling, 1991, Vol. 46, No. 6, p
50-51.

[24] Han, Y., Dynamic sequencing of jobs on conveyor sys-
tems for minimizing changeovers (Ph. D. Thesis), in
School of Industrial and Systems Engineering Atlanta :
Georgia Institute of Technology, 2004.

[25] Han, Y., Optimal Conveyor Selection Problem on a
Diverging Conveyor Junction Point. Journal of the

Hyoungtae Kim․Yong-Hee Han108

Society of Korea Industrial and Systems Engineering,
2009, Vol. 32, No. 3, p 118-126.

[26] Horrey, R.J., Sortation systems : from push to high-
speed fully automated applications, Proceedings of the
5th International Conference on Automation in Ware-
housing, Atlanta, GA, 1983.

[27] Johnson, M.E., The impact of sorting strategies on auto-
mated sortation system performance. IIE Transactions,
1998, Vol. 30, p 67-77.

[28] Johnson, M.E. and Lofgren, T., Model decomposition
speeds distribution center design. Interfaces, 1994, Vol.
24, No. 5, p 95-106.

[29] Kittithreerapronchai, O. and Anderson, C., Do ants paint
trucks better than chickens? Market versus response
thresholds for distributed dynamic scheduling, Proceed-
ings of the 2003 IEEE Congress on Evolutionary Com-
putation, Canberra, Australia, 2003.

[30] Laporte, G., The traveling salesman problem : an over-
view of exact and approximate algorithms. European
Journal of Operational Research, 1992, Vol. 59, p
231-247.

[31] Lee, C.Y. and Vairaktarakis, G., Workforce planning
in mixed model assembly systems. Operations Research,
1997, Vol. 45, p 553-567.

[32] Meller, R.D., Optimal order-to-lane assignments in an
order accumulation/sortation system. IIE Transactions,
1997, Vol. 29, p 293-301.

[33] Monma, C.L. and Potts, C.N., On the complexity of
scheduling with batch setup times. Operations Research,
1999, Vol. 37, p 798-804.

[34] Morley, R., Painting trucks at General Motors : the ef-
fectiveness of a complexity-based approach. Cambridge,
The Ernst and Young Center for Business Innovation,
1996, p 53-58.

[35] Morley, R. and Ekberg, G., Cases in chaos : complex-
ity-based approaches to manufacturing. The Ernst and
Young Center for Business Innovation, 1998, p 97-102.

[36] Morley, R. and Schelberg, C., An analysis of a plant-
specific dynamic scheduler, Final Report, Intelligent.

Dynamic Scheduling for Manufacturing Systems, 1993,
p 115-122.

[37] Muth, E.J., Conveyor theory : a survey. AIIE Transac-
tions, 1979, Vol. 11, No. 4, p 270-277.

[38] Myron, D.L., Paint blocking in Ford's in-line vehicle
sequencing environment (MS Thesis), Leaders for Manu-
facturing Program. Cambridge, MIT, 1996.

[39] Nemhauser, G.L. and Wolsey, L.A., Integer and Combi-
natorial Optimization, John Wiley and Sons, Inc., 1988.

[40] Potts, C.N. and Wassenhove, L.N.V., Integrating sched-
uling with batching and lot-sizing : a review of algo-
rithms and complexity. Journal of Operational Research
Society, 1992, Vol. 43, p 395-406.

[41] Schwind, G.F., High speed distribution at Walden books.
Material Handling Engineering November, 1992, p 76-80.

[42] Shapiro, J., Mathematical programming : structures and
algorithms. New York, Wiley, 1979.

[43] Siddiqee, M.W., Investigation of Sorting and Train
Formation Schemes for a Railroad Hump Yard, Traffic
Flow and Transportation, G.F. Newell. New York, Else-
vier, 1972, p 377-387.

[44] Unal, A.T. and Kiran, A.S., Batch sequencing. IIE
Transactions, 1992, Vol. 24, p 73-83.

[45] Webster, S. and Baker, K.R., Scheduling groups of jobs
on a single machine. Operations Research, 1995, Vol.
43, p 692-703.

[46] Witt, C.E., Reebok’s distribution on fast track. Material
Handling Engineering March, 1989, p 43-46.

[47] Yagar, S., Saccomanno, F.F., and Shi, Q., An efficient
sequencing model for humping in a rail yard. Transpor-
tation Research, 1983, Vol. 17A, p 251-262.

[48] Yano, C.A. and Bolat, A., Survey, development, and
application of algorithms for sequencing paced assembly
lines. Journal of Manufacturing Operations Management,
1989, Vol. 2, p 172-198.

[49] Yano, C.A. and Rachamadugu, R., Sequencing to Mini-
mize Work Overload in Assembly Lines with Product
Options. Management Science, 1991, Vol. 37, No. 5, p
572-586.

