6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구

The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam

  • 이승훈 (전북대학교병원 방사선종양학과) ;
  • 곽근탁 (전북대학교병원 방사선종양학과) ;
  • 박주경 (전북대학교병원 방사선종양학과) ;
  • 김양수 (전북대학교병원 방사선종양학과) ;
  • 차석용 (전북대학교병원 방사선종양학과)
  • Lee, Seung Hoon (Department of Radiation Oncology, Chonbuk National University Hospital) ;
  • Kwak, Keun Tak (Department of Radiation Oncology, Chonbuk National University Hospital) ;
  • Park, Ju Kyeong (Department of Radiation Oncology, Chonbuk National University Hospital) ;
  • Gim, Yang Soo (Department of Radiation Oncology, Chonbuk National University Hospital) ;
  • Cha, Seok Yong (Department of Radiation Oncology, Chonbuk National University Hospital)
  • 투고 : 2013.05.30
  • 심사 : 2013.09.01
  • 발행 : 2013.09.30

초록

목 적: 본 연구에서 우리는 6 MeV 전자선의 조사야 확대에 따른 선량변화가 차폐물질 원자번호와 관계가 있음을 알아보고 그 영향인자를 분석 하고자 한다. 대상 및 방법: 먼저 평행평판형 전리함(Exradin P11)을 $25{\times}25cm^2$ 폴리스티렌 팬텀표면에 평탄하게 끼운다. 허용투과율 5% 두께의 알루미늄, 구리, 납 물질들을 팬텀 상단에 차폐시킨 후 조사야 $6{\times}6$, $10{\times}10$ 그리고 $20{\times}20cm^2$별로 측정하였다. 조사조건은 선원-표면간거리 100 cm에서 기준조사야인 $10{\times}10cm^2$에 6 MeV 전자선을 이용하여 100 cGy 조사하였다. 다음으로 MCNP (Monte Carlo N Particle Transport Code)를 이용하여 각 물질 통과 후 발생되는 광자수, 전자수, 그리고 축적에너지를 계산하였다. 결 과: 허용투과율 5% 두께에 대한 차폐물 종류에 따른 측정결과 조사야 $10{\times}10cm^2$을 기준으로 한 $6{\times}6cm^2$$20{\times}20cm^2$의 두께변화율은 알루미늄에서 각각 +0.06%와 -0.06%, 구리에서 각각 +0.13%와 -0.1%, 납에서 각각 -1.53%와 +1.92%였다. 계산결과 조사야 $10{\times}10cm^2$ 대비 $6{\times}6cm^2$, $20{\times}20cm^2$의 축적에너지는 차폐를 하지 않았을 경우 각각 -4.3%와 +4.85%, 알루미늄 사용 시 각각 -0.87%와 +6.93%, 구리 사용 시 각각 -2.46%와 +4.48%, 납 사용 시 각각 -4.16%와 +5.57%였다. 광자수의 경우 차폐를 하지 않았을 경우 각각 -8.95%와 +15.92%, 알루미늄 사용 시 각각 -15.56%와 +16.06%, 구리 사용시 각각 -12.27%와 +15.53%, 납 사용 시 각각 -12.36%와 +19.81%였다. 전자수의 경우 차폐를 하지 않았을 경우 각각 -3.92%와 +4.55%, 알루미늄 사용 시 각각 +0.59%와 +6.87%, 구리 사용 시 각각 -1.59%와 +3.86%, 납 사용 시 각각 -5.15%와 +4.00%였다. 결 론: 본 연구로 조사야 증가함에 따른 차폐물 두께가 저 원자번호에서 감소하며, 고 원자번호에서는 증가함을 볼 수 있었으며, 계산을 통해 저 원자번호물질에서는 저지방사선, 고 원자번호물질에서는 산란전자가 영향을 주는 것을 알 수 있었다.

Purpose: In this study, we analyzed how the dose change by field size effects on atomic number of shielding materials while using 6 MeV election beam. Materials and Methods: The parallel plate chamber is mounted in $25{\times}25cm^2$ the phantom such that the entrance window of the detector is flush with the phantom surface. phantom was covered laterally with aluminum, copper and lead which thickness have 5% of allowable transmission and then the doses were measured in field size $6{\times}6$, $10{\times}10$ and $20{\times}20cm^2$ respectively. 100 cGy was irradiated using 6 MeV electron beam and SSD (Source Surface Distance) was 100 cm with $10{\times}10cm^2$ field size. To calculate the photon flux, electron flux and Energy deposition produced after pass materals respectively, MCNPX code was used. Results: The results according to the various shielding materials which have 5% of allowable transmission are as in the following. Thickness change rate with field size of $6{\times}6cm^2$ and $20{\times}20cm^2$ that compared to the field size of $10{\times}10cm^2$ found to be +0.06% and -0.06% with aluminum, +0.13% and -0.1% with copper, -1.53% and +1.92% with lead respectively. Compare to the field size $10{\times}10cm^2$, energy deposition for $6{\times}6cm^2$ and $20{\times}20cm^2$ had -4.3% and +4.85% respectively without shielding material. With aluminum it had -0.87% and +6.93% respectively and with lead it had -4.16% and +5.57% respectively. When it comes to photon flux with $6{\times}6cm^2$ and $20{\times}20cm^2$ of field sizes the chance -8.95% and +15.92% without shielding material respectively, with aluminum the number -15.56% and +16.06% respectively and with copper the chance -12.27% and +15.53% respectively, with lead the number +12.36% and -19.81% respectively. In case of electron flux in the same condition, the number -3.92% and +4.55% respectively without shielding material respectively, with aluminum the number +0.59% and +6.87% respectively, with copper the number -1.59% and +3.86% respectively, with lead the chance -5.15% and +4.00% respectively. Conclusion: In this study, we found that the required thickness of the shielding materials got thinner with low atomic number substance as the irradiation field is increasing. On the other hand, with high atomic number substance the required thickness had increased. In addition, bremsstrahlung radiation have an influence on low atomic number materials and high atomic number materials are effected by scattered electrons.

키워드

참고문헌

  1. Prasad SG, Parthasaradhi K, Bloomer WD, et al.: Aluminum, copper, tin and lead as shielding materials in the treatment of cancer with high-energy electrons. Radi Phy and Chemi 1998;53:361-366 https://doi.org/10.1016/S0969-806X(98)00130-3
  2. Prasad SG, Parthasaradhi K, Arbetter S, et al.: Lead shielding thickness for dose reduction of 6-MeV electrons for different square fields. Med Phys 1988;15:263-266 https://doi.org/10.1118/1.596257
  3. Purdy JA, Choi MC, Feldman A: Lipowitz metal shielding thickness for dose reduction of 6-20 MeV electrons. Med Phys 1980;7:251-253 https://doi.org/10.1118/1.594680
  4. Tajiri M, Tokiya Y, Uenishi J, et al.: New shielding materials for clinical electron beams. Radio Oncol 2006;80:391-393 https://doi.org/10.1016/j.radonc.2006.08.002
  5. Everhart TE: Simple theory concerning the reflection of electrons from solids. J Appl Phys 1960;31:1483-1490 https://doi.org/10.1063/1.1735868
  6. Klevenhagen SC, Lamdert GD, Arbabi A: Backscattering in electron beam therapy for energies between 3 and 35MeV. Phys Med Biol 1982;27:363-373 https://doi.org/10.1088/0031-9155/27/3/003
  7. Prasad SG, Parthasaradhi K, Al-Najjar WH, et al.: Tin shielding thicknesses for electrons. Med Dosi 1998;23:21-23 https://doi.org/10.1016/S0958-3947(97)00111-8
  8. Chibani O, Ma CM: Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linac. Med Phys 2003;30:1990-2000 https://doi.org/10.1118/1.1590436
  9. Pelowitz DB: MCNPXTM user's manual version 2.6.0. LANL 2008
  10. Zanini A, Durisi E, Fasolo F, et al.: Monte Carlo Simulation of the Photoneutron field in linac radiotherapy treatments with different collimation systems. Phys Med Biol 2004;49: 571-582 https://doi.org/10.1088/0031-9155/49/4/008
  11. Lee SA, Lee JO, Moon SR, et al.: A study on the simulation and measurement of 6 MeV electron beam. J Korean Soc Ther Radiol 1995;13:285-289
  12. Chow JCL, Owrangi AM: Depth dependence of electron backscatter: An energy spectral and dosimetry study using monte carlo simulation. Med Phys 2009;36:594-601 https://doi.org/10.1118/1.3062943
  13. Karlsson MG, Karlsson M, Ma CM: Treatment head design for multileaf collimated high-energy electrons. Med Phys 1999;26:2161-2167 https://doi.org/10.1118/1.598732
  14. Tsai YS, Whitis V: thick target bremsstrahlung and target consideration for secondary particle production by electrons. Phys Rev 1966;149:1248-1257 https://doi.org/10.1103/PhysRev.149.1248
  15. Hunt MA, Kutcher GJ, Buffa A: Electron backscatter for parallel-plate chamber. Med Phys 1988;15:96-103 https://doi.org/10.1118/1.596165
  16. Khan FM: The physics of radiation therapy. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2010;241-314
  17. 추성실, 서창옥, 김귀언: 산란전자선을 이용한 강내측방조사 기구의 제작과 특성. 대한방사선종양학회지 2001;19:74-80
  18. Sathiyan S, Ravikumar M, Supe SS: Measurement of backscattered dose at metallic interfaces using high energy electron beams. Rep Pract Oncol Radiother 2006;11:117-121 https://doi.org/10.1016/S1507-1367(06)71056-2
  19. Werner BL, Kahn FM, Deibel FC: Model for calculation depth dose distributions for broad electron beam. Med Phys 1983;10:582-588 https://doi.org/10.1118/1.595329