Evaluation of Planning Dose Accuracy in Case of Radiation Treatment on Inhomogeneous Organ Structure

불균질부 방사선치료 시 계획 선량의 정확성 평가

  • Kim, Chan Yong (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Lee, Jae Hee (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Kwak, Yong Kook (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Ha, Min Yong (Department of Radiation Oncology, Seoul National University Hospital)
  • 김찬용 (서울대학교병원 방사선종양학과) ;
  • 이제희 (서울대학교병원 방사선종양학과) ;
  • 곽용국 (서울대학교병원 방사선종양학과) ;
  • 하민용 (서울대학교병원 방사선종양학과)
  • Received : 2013.05.30
  • Accepted : 2013.09.01
  • Published : 2013.09.30

Abstract

Purpose: We are to find out the difference of calculated dose of treatment planning system (TPS) and measured dose in case of inhomogeneous organ structure. Materials and Methods: Inhomogeneous phantom is made with solid water phantom and cork plate. CT image of inhomogeneous phantom is acquired. Treatment plan is made with TPS (Pinnacle3 9.2. Royal Philips Electronics, Netherlands) and calculated dose of point of interest is acquired. Treatment plan was delivered in the inhomogeneous phantom by ARTISTE (Siemens AG, Germany) measured dose of each point of interest is obtained with Gafchromic EBT2 film (International Specialty Products, US) in the gap between solid water phantom or cork plate. To simulate lung cancer radiation treatment, artificial tumor target of paraffin is inserted in the cork volume of inhomogeneous phantom. Calculated dose and measured dose are acquired as above. Results: In case of inhomogeneous phantom experiment, dose difference of calculated dose and measured dose is about -8.5% at solid water phantom-cork gap and about -7% lower in measured dose at cork-solid water phantom gap. In case of inhomogeneous phantom inserted paraffin target experiment, dose difference is about 5% lower in measured dose at cork-paraffin gap. There is no significant difference at same material gap in both experiments. Conclusion: Radiation dose at the gap between two organs with different electron density is significantly lower than calculated dose with TPS. Therefore, we must be aware of dose calculation error in TPS and great care is suggested in case of radiation treatment planning on inhomogeneous organ structure.

목 적: 불균질부를 포함하고 있는 치료부위의 치료계획 시 불균질 경계면에서의 TPS상 선량분포와 phantom을 이용하여 측정된 실제 선량분포를 비교하여 그 차이를 알아보고자 한다. 대상 및 방법: 4 cm 두께의 solid water phantom 사이에 폐와 유사한 밀도를 가진 8 cm 두께의 cork (density: 0.23 $g/cm^2$)를 위치시켜 phantom을 제작하여 CT 영상을 획득하였으며, 본원에서 사용하고 있는 Pinnacle 치료계획 시스템의 Collapsed-cone(CC) convolution 선량계산 알고리즘을 이용하여 6/15 MV 광자선으로 치료 계획된 선량분포와 실제 phantom에 EBT2 필름을 삽입해 측정한 선량을 비교 평가하였다. 또한 실제 폐암 환자와 유사한 치료계획을 비교하기 위해 Phantom 내부에 치료하고자 하는 종양부위(target volume)로 가정한 파라핀($3{\times}3{\times}3$ cm)을 Location "A" (일반조직과 떨어져있는 가상의 종양: 섬모델)와 Location "B" (일반조직과 붙어있는 가상의 종양: 반도모델)에 삽입하여 CT scan 후 치료계획을 시행하였다. 선량계획과 동일한 조건으로 Phantom을 set-up 후 Phantom의 paraffin target volume 경계면 A (Ant방향), B (Rt방향), C (Post 방향) point에 필름을 삽입하고 방사선을 조사하여 측정된 선량을 TPS선량과 비교평가 하였다. 결 과: 불균질 phantom을 이용한 계획선량과 측정선량과의 차이는 solid water와 cork 경계면을 제외한 부분에서 선량차이가 크지 않았지만 밀도가 급격히 변화하는 첫 번째 구간과 두 번째 구간에서 -5.4%~-12.6%의 선량감소를 보였다. 또한 paraffin target을 삽입한 실험에서는 Location "A"의 경우 실제 측정선량이 A, B, C point에서 각각 -2.5~-4.7%, -2.3~-2.8%, -4.5~-8.8%의 낮은 선량을 나타냈으며, Location "B"의 경우에도 A, B, C point에서 각각 0.08~5.27%, -3.17~-4.74%, -7.86~-11.56%의 선량 차이를 나타내었다. 결 론: 이번 연구의 결과 불균질부 내에서의 치료계획 시스템의 계획된 선량과 실제 측정된 선량에 오차의 가능성이 확인되었다. 급속도로 발전하고 있는 방사선 치료기술과 그만큼 정밀함을 요하는 치료계획 시 이러한 가능성에 대해 인지하고 선량검증에 대한 여러 방법들을 연구하고 개발하는 것이 치료의 발전과 필수적으로 동반되어야 할 것이며 본원에서도 이번 연구를 통해 치료계획 시 발생할 수 있는 변수에 대해서 더 주의 깊게 판단하고 적용할 수 있을 것으로 사료된다.

Keywords

References

  1. Fogliata A, Vanetti E, Albers D, et al.: On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 2007;52:1363-1385 https://doi.org/10.1088/0031-9155/52/5/011
  2. IAEA TECDOC 1540: Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems. IAEA, Vienna (2007)
  3. Ahnesjo A, Weber L, Murman A, Saxner M, Thorslund I, Traneus E: Beam modeling and verification of a photon beam multisource model. Med Phys 2005;32:1722-1737 https://doi.org/10.1118/1.1898485
  4. AAPM TG-65: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams. American association of physicists in medicine (2004)
  5. Robinson D: Inhomogeneity correction and the analytic anisotropic algorithm. J Appl Clin Med Phys 2008;9:112-122 https://doi.org/10.1120/jacmp.v9i2.2786