DOI QR코드

DOI QR Code

Studies of Lithium Diffusivity of Silicon-Based Film Electrodes for Rechargeable Lithium Batteries

  • Nguyen, Cao Cuong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Song, Seung-Wan (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
  • Received : 2013.09.23
  • Accepted : 2013.10.07
  • Published : 2013.09.30

Abstract

Lithium diffusivity of the silicon (Si)-based materials of Si-Cu and $SiO_x$ (x = 0.4, 0.85) with improved interfacial stability to electrolyte have been determined, using variable rate cyclic voltammetry with film model electrodes. Lithium diffusivity is found to depend on the intrinsic properties of anode material and electrolyte; the fraction of oxygen for $SiO_x$ (x = 0.4, 0.85), which is directly related to electrical conductivity, and the electrolyte type with different ionic conductivity and viscosity, carbonate-based liquid electrolyte or ionic liquid-based electrolyte, affect the lithium diffusivity.

Keywords

References

  1. B. Scrosati and J. Garche, J. Power Sources, 195, 2419 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  2. M.N. Obrovac and L. Christensen, Electrochem. Solid-State Lett., 7, A93 (2004). https://doi.org/10.1149/1.1652421
  3. U. Kasavajjula, C. Wang, and A.J. Appleby, J. Power Sources, 163, 1003 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
  4. S.-W. Song and S.-W. Baek, Electrochem. Solid-State Lett, 12, A23 (2009). https://doi.org/10.1149/1.3028216
  5. C.C. Nguyen and S.-W. Song, Electrochim. Acta, 55, 3026 (2010). https://doi.org/10.1016/j.electacta.2009.12.067
  6. H. Choi, C.C. Nguyen, and S.W. Song, Bull. Korean Chem. Soc., 31, 2519 (2010). https://doi.org/10.5012/bkcs.2010.31.9.2519
  7. C.C. Nguyen, H. Choi, and S.-W. Song, J. Electrochem. Soc., 160, A906 (2013). https://doi.org/10.1149/2.118306jes
  8. C.C. Nguyen and S.-W. Song, Electrochem. Commun., 12, 1593 (2010). https://doi.org/10.1016/j.elecom.2010.09.003
  9. C.C. Nguyen, D.-W. Kim, and S.-W. Song, J. Electrochem. Sci. & Tech., 2, 8 (2011). https://doi.org/10.5229/JECST.2011.2.1.008
  10. C. C. Nguyen, S.-W. Woo, and S.-W. Song, J. Phys. Chem. C, 116, 14764 (2012). https://doi.org/10.1021/jp3019815
  11. T.L. Kulova, A.M. Skundin, Y.V. Pleskov, E.I. Terukov, O.I. Kon'kov, and O.I. Kon'kov, J. Electroanal. Chem., 600, 217 (2007). https://doi.org/10.1016/j.jelechem.2006.07.002
  12. J. Xie, N. Imanishi, T. Zhang, A. Hirano, and Y. Takeda, O. Yamamoto, Mater. Chem. Phys., 120, 421 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.031
  13. T. Zhang, H.P. Zhang, L.C. Yang, B. Wang, Y.P. Wu, and T. Takamura, Electrochim. Acta., 53, 5660 (2008). https://doi.org/10.1016/j.electacta.2008.03.017
  14. S.H. Nguyen, J.C. Lim, and J.K. Lee, Electrochim. Acta, 74, 53 (2012). https://doi.org/10.1016/j.electacta.2012.03.176
  15. H. Li, F. Cheng, Z. Zhu, H. Bai, Z. Tao, and J. Chen, J. Alloys Compd., 509, 2919 (2011). https://doi.org/10.1016/j.jallcom.2010.11.156
  16. N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang, C.H. Chen, and I. Lieberwirth, Solid State Ionics, 180, 222 (2009). https://doi.org/10.1016/j.ssi.2008.12.015
  17. K. Tasaki, A. Goldberg, J.-J. Lian, M. Walker, A. Timmons, and S.J. Harris, J. Electrochem. Soc., 156, A1019 (2009). https://doi.org/10.1149/1.3239850
  18. S.-W. Song, R.P. Reade, R. Kostecki, and K.A. Striebel, J. Electrochem. Soc., 153, A12 (2006). https://doi.org/10.1149/1.2128763
  19. C.C. Nguyen and S.-W. Song, Electrochim. Acta, 103, 275 (2013). https://doi.org/10.1016/j.electacta.2013.05.074
  20. E. Pollak, G. Salitra, V. Baranchugov, and D. Aurbach, J. Phys. Chem. C., 111, 11437 (2007).
  21. W.J. Weydanz, M. Wohlfahrt-Mehrens, and R.A. Huggins, J. Power Sources, 81, 237 (1999).
  22. B.A. Boukamp, G.C. Lesh, and R.A. Huggins, J. Electrochem. Soc., 128, 725 (1981). https://doi.org/10.1149/1.2127495
  23. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc., New York, 2001.
  24. T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, J. Electrochem. Soc., 151, A1120 (2004). https://doi.org/10.1149/1.1763141
  25. O. Borodin, G.D. Smith, and W. Henderson, J. Phys. Chem. B, 110, 16879 (2006). https://doi.org/10.1021/jp061930t
  26. J.-C. Lassegues, J. Grondin, and D. Talaga, Phys. Chem. Chem. Phys., 8, 5629 (2006). https://doi.org/10.1039/b615127b
  27. L.J. Hardwick, M. Holzapfel, A. Wokaun, and P. Novak, J. Raman Spectroscopy, 38, 110 (2007). https://doi.org/10.1002/jrs.1632
  28. Y. Yamada, Y. Iriyama, T. Abe, and Z. Ogumi, J. Electrochem. Soc., 157, A26 (2010). https://doi.org/10.1149/1.3247598
  29. K. Striebel, J. Shim, V. Srinivasan, and J. Newman, J. Electrochem. Soc., 152, A664 (2005). https://doi.org/10.1149/1.1862477

Cited by

  1. Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries vol.6, pp.4, 2015, https://doi.org/10.5229/JECST.2015.6.4.116