DOI QR코드

DOI QR Code

Immobilization of Gd(III)-DOTA Complexes in Layered Double Hydroxides Thin Film

  • Lee, Jong Hyeon (Department of Chemistry, The Catholic University of Korea) ;
  • Jung, Duk-Young (Department of Chemistry, Sungkyunkwan Advanced Institute of Nanotechnology, Institute of Basic Sciences, Sungkyunkwan University)
  • 투고 : 2013.08.25
  • 심사 : 2013.08.30
  • 발행 : 2013.11.20

초록

키워드

Experimental

Preparation and Characterization of LDH-DOTA(Gd) Thin Film. LDH-carbonate, [Mg4Al2(OH)12]CO3·nH2O, was prepared using the coprecipitation method.5a,b The resulting precipitate was hydrothermally treated in deionized water at 180 ℃ to obtain a larger crystal size and to improve crystallinity of LDH-carbonate, followed by drying at 70 ℃.12 The thin film of LDH-carbonate was prepared on silicon (100) wafers.6 To prepare the LDH-DOTA, the thin film of LDHcarbonate was transferred into a Teflon-coated autoclave vessel containing 20 mg of DOTA and a binary mixture of ethanol and toluene, and heated at 120 ℃ for 72 h. The LDH-DOTA(Gd) was prepared by immersing the sample in 5 mM of ethanolic Gd(acetate)3·nH2O solution for 1h. The XRD patterns were measured using a Rigaku D/MAX-2000 Ultima using Cu-Kα radiation (λ = 1.5405 Å). The SEM and TEM images were taken on a JEOL 7401F and a 300 kV, respectively. FT-IR was undertaken on a Biorad FTS 6000 equipped with a DuraSampl IR II diamond accessory with an ATR mode.

참고문헌

  1. Lauffer, R. B. Chem. Rev. 1987, 87, 901. https://doi.org/10.1021/cr00081a003
  2. Parker, D. Chem. Rev. 1990, 19, 271. https://doi.org/10.1039/cs9901900271
  3. Liu, T.; Qian, Y.; Hu, X.; Ge, Z.; Liu, S. J. Mater. Chem. 2012, 22, 5020. https://doi.org/10.1039/c2jm15092a
  4. Liu, T.; Li, X.; Qian, Y.; Hu, X.; Liu, S. Biomaterials 2012, 33, 2521. https://doi.org/10.1016/j.biomaterials.2011.12.013
  5. Li, C.; Wang, L.; Evans, D. G.; Duan, X. Ind. Eng. Chem. Res. 2009, 48, 2162. https://doi.org/10.1021/ie800342u
  6. Gago, S.; Pillinger, M.; Sa Ferreira, R. A.; Carlos, L. D.; Santos, T. M.; Goncalves, I. S.; Chem. Mater. 2005, 17, 5803. https://doi.org/10.1021/cm051431p
  7. Xu, Z. P.; Kurniawan, N. D.; Bartlett, P. F.; Lu, G. Q. Chem. Eur. J. 2007, 13, 2824. https://doi.org/10.1002/chem.200600571
  8. Li, L.; Feng, Y.; Li, Y.; Zhao, W.; Shi, J. Angew. Chem. Int. Ed. 2009, 48, 5888. https://doi.org/10.1002/anie.200901730
  9. Newman, S. P.; Jones. W. New J. Chem. 1998, 22, 105. https://doi.org/10.1039/a708319j
  10. Meyn, M.; Benele. K.; Lagaly, G. Inorg. Chem. 1990, 29, 5201. https://doi.org/10.1021/ic00351a013
  11. Zhao, H.; Nagy, K. L. J. Colloid Interface Sci. 2004, 274, 613. https://doi.org/10.1016/j.jcis.2004.03.055
  12. Prasanna, S. V.; Rao, R. A. P.; Kamath, P. V. J. Colloid Interface Sci. 2006, 304, 292. https://doi.org/10.1016/j.jcis.2006.08.064
  13. Miyata, S. Clays Clay Miner. 1983, 31, 305. https://doi.org/10.1346/CCMN.1983.0310409
  14. Miyata, S.; Okada, A. Clays Clay Miner. 1977, 25, 14. https://doi.org/10.1346/CCMN.1977.0250103
  15. Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
  16. Kahn, A. I.; O'Hare, D. J. Mater. Chem. 2002, 12, 3191. https://doi.org/10.1039/b204076j
  17. Lee, J. H.; Rhee, S. W.; Jung, D. Y. Chem. Commun. 2003, 2740.
  18. Lee, J. H.; Rhee, S. W.; Jung, D. Y. Chem. Mater. 2004, 16, 3774. https://doi.org/10.1021/cm049357i
  19. Lee, J. H.; Rhee, S. W.; Jung, D. Y. Chem. Mater. 2006, 18, 4740. https://doi.org/10.1021/cm060278b
  20. Lee, J. H.; Rhee, S. W.; Jung, D. Y. J. Am. Chem. Soc. 2007, 129, 3522. https://doi.org/10.1021/ja070512e
  21. Lee, J. H.; Rhee, S. W.; Nam, H. J.; Jung, D. Y. Adv. Mater. 2009, 21, 546. https://doi.org/10.1002/adma.200801096
  22. Lee, J. H.; Lee, Y. S.; Kim, H.; Jung, D. Y. Eur. J. Inorg. Chem. 2011, 3334.
  23. Allen, C. C.; Francesconi, L. C.; Malley, M. F. Kumar, K.; Gougoutas, J. Z.; Tweedle, M. F. Inorg. Chem. 1993, 32, 3501. https://doi.org/10.1021/ic00068a020
  24. Lecomte, C.; Dahaoui-Gindrey, V.; Chollet, H.; Gros, C.; Mishra, A. K.; Barbette, F.; Pullumbi, P.; Guilard, R. Inorg. Chem. 1977, 36, 3827.
  25. Kumar, K.; Sukumaran, K. V.; Tweedle, M. F. Anal. Chem. 1994, 66, 295. https://doi.org/10.1021/ac00074a018
  26. Gries, H.; Miklautz, H. Physiol. Chem. Phys. Med. NMR 1984, 16, 105.
  27. Beaudot, P.; de Roy, M. E.; Besse, J. P. J. Solid State Chem. 2001, 161, 332. https://doi.org/10.1006/jssc.2001.9322
  28. Beaudot, P.; de Roy, M. E.; Besse, J. P. J. Solid State Chem. 2004, 177, 2691. https://doi.org/10.1016/j.jssc.2004.03.048
  29. Tarasov, K. A.; O'Hare, D. Inorg. Chem. 2003, 42, 1919. https://doi.org/10.1021/ic0203926
  30. Wang, L. Y.; Wu, G. Q.; Evans, D. G. Mater. Chem. Phys. 2007, 104, 133. https://doi.org/10.1016/j.matchemphys.2007.02.098
  31. Perez, M. R.; Pavlovic, I.; Barriga, C.; Cornejo, J.; Hermosin, M. C.; Ulibarri, M. A. Appl. Clay Sci. 2006, 32, 245. https://doi.org/10.1016/j.clay.2006.01.008
  32. Lau, E. Y.; Lightstone, F. C.; Colvin, M. E. Inorg. Chem. 2006, 23, 9225.
  33. Benetollo, F.; Bombieri, G.; Calabi, L.; Aime, S.; Botta, M. Inorg. Chem. 2003, 42, 148. https://doi.org/10.1021/ic025790n
  34. Hickey, L.; Kloprogge, J. L.; Frost, R. L. J. Mater. Sci. 2000, 35, 4347. https://doi.org/10.1023/A:1004800822319