CONGRUENCE PROPERTIES OF COEFFICIENTS OF MODULAR FORMS FOR $\Gamma_{0}^{+}(5)$

SoYoung Choi*

Abstract

We find congruence properties on the coefficients of modular forms for $\Gamma_{0}^{+}(5)$ generated by $\Gamma_{0}(5)$ and a Fricke involution $\left(\begin{array}{cc}0 & -1 \\ 5 & 0\end{array}\right)$.

1. Introduction

The study of the arithmetic properties of modular forms with integers is an interesting branch in the theory of modular forms (see [3]). Choie, Kohnen and Ono (see [1]) obtained congruence properties for coefficients of modular forms for $S L_{2}(\mathbb{Z})$. In this paper we discover congruence properties on the coefficients of modular forms for $\Gamma_{0}^{+}(5)$ which is generated $\Gamma_{0}(5)$ and a Fricke involution $\left(\begin{array}{cc}0 & -1 \\ 5 & 0\end{array}\right)$. Let k be an even integer. Let $M_{k}\left(\Gamma_{0}^{+}(5)\right)$ the vector space of modular forms for $\Gamma_{0}^{+}(5)$ and $r:=\operatorname{dim} M_{k}\left(\Gamma_{0}^{+}(5)\right)$. Indeed, we have the following.
(1) $M_{2}\left(\Gamma_{0}^{+}(5)\right)=\{0\}$.
(2) $\operatorname{dim} M_{k}\left(\Gamma_{0}^{+}(5)\right)=(k-2) / 4$ if $k \equiv 2(\bmod 4)$ and $\operatorname{dim} M_{k}\left(\Gamma_{0}^{+}(5)\right)=k / 4+$ 1 otherwise. (See Theorem 2.5.2 in [2]).
As usual, we let \mathbb{H} be the complex upper half plane and $q=e^{2 \pi i z}(z \in \mathbb{H})$ and

$$
E_{k}=1-\frac{2 k}{B_{k}} \sum_{n \geq 0} \sigma_{k-1}(n) q^{n}
$$

[^0]be an Eisenstein series of weight k, where $\sigma_{k-1}(n)$ is the sum of $(k-1)$ st powers of the positive divisors of n and B_{k} is Bernoulli number. For instance,
$E_{4}(z)=1+240 q+2160 q^{2}+\cdots$ and $E_{6}(z)=1-504 q+-16632 q^{2}+\cdots$.
We are ready to state our main theorem.
THEOREM 1.1. Let $k>4 r-4$ be an even positive integer such that $k \equiv 0 \quad(\bmod 4)$. For any $f=\sum_{n \geq 0} a_{f}(n) q^{n} \in M_{k}\left(\Gamma_{0}^{+}(5)\right) \cap \mathbb{Z}[[q]]$, we have that for each positive integer \bar{b},
$$
a_{f E_{6}}\left(5^{b}\right) \equiv-a_{f}(0) \quad(\bmod 5)
$$

2. Proof of Theorem 1.1

For each positive even integer $k>2$, let

$$
\begin{gathered}
E_{k}^{+}(z)=E_{k}+5^{k / 2} E_{k}(5 z) \\
E_{2}(z)=1-24 \sum_{n>0} \sigma_{1}(n) q^{n}, \quad E_{2}^{+}(z)=E_{2}-5 E_{2}(5 z)
\end{gathered}
$$

then $E_{k}^{+}(z)$ is a modular form for $\Gamma_{0}^{+}(5)$ of weight k and $E_{2}^{+}(z)$ is a modular form for $\Gamma_{0}(5)$ (see [5, page 88]) whose the sign of the Fricke involution is -1 . Consequently $\left(E_{2}^{+}(z)\right)^{2}$ is a modular form for $\Gamma_{0}^{+}(5)$ of weight 4

Specially we have the following Fourier expansions:

$$
E_{4}^{+}(z)=26+240 q+\cdots, \quad\left(E_{2}^{+}(z)\right)^{2}=16+192 q+\cdots
$$

Thus

$$
\Delta_{5}^{+}(z):=\frac{13\left(E_{2}^{+}(z)\right)^{2}-8 E_{4}^{+}(z)}{1576}=q+\cdots
$$

is a normalized cusp form for $\Gamma_{0}^{+}(5)$ of weight 4 . The below proposition guarantees that $\Delta_{5}^{+}(z)$ has no zero on \mathbb{H}.

Proposition 2.1. Let f be a modular form for $\Gamma_{0}^{+}(5)$ of weight k, which is not identically zero. We have

$$
\sum_{p \in \Gamma_{0}^{+}(5) \backslash \mathbb{H}} e_{p} v_{p}(f)+v_{\infty}(f)=\frac{k}{4}
$$

where $1 / e_{p}$ is the cardinality of $\Gamma_{0}^{+}(5)_{p}$ and $v_{p}(f)$ is the order of a modular form f at a point p.

Proof. See [4, Proposition 2.1].

We define a Hauptmodul $j_{5}^{+}(z)$ for $\Gamma_{0}^{+}(5)$ which plays an important role in this paper as follows

$$
j_{5}^{+}(z):=\frac{E_{4}^{+}(z)}{\Delta_{5}^{+}(z)}=\frac{1}{q}+\cdots
$$

For any $f \in M_{k}\left(\Gamma_{0}^{+}(5)\right)$, we define

$$
W(f)=\frac{f}{\left(\Delta_{5}^{+}\right)^{r-1}}
$$

To prove Theorem 1.1 we need the following proposition.
Proposition 2.2. W is a vector space isomorphism from $M_{k}\left(\Gamma_{0}^{+}(5)\right)$ onto the space R of polynomials in j_{5}^{+}of degree less than r.

Proof. For $d=0,1, \ldots, r-1$ the functions $\left(j_{5}^{+}\right)^{d}\left(\Delta_{5}^{+}\right)^{r-1} \in M_{k}\left(\Gamma_{0}^{+}(5)\right)$. Since $W\left(\left(j_{5}^{+}\right)^{d}\left(\Delta_{5}^{+}\right)^{r-1}\right)=\left(j_{5}^{+}\right)^{d}, W$ carries the subspace Q of $M_{k}\left(\Gamma_{0}^{+}(5)\right)$ generated by the modular forms $\left(j_{5}^{+}\right)^{d}\left(\Delta_{5}^{+}\right)^{r-1}$ isomorphically onto R. Hence $\operatorname{dim} Q=r$ which implies that $Q=M_{k}\left(\Gamma_{0}^{+}(5)\right)$.

We are ready to prove Theorem 1.1. We note that two functions

$$
\frac{-1}{2 \pi i} \frac{d j_{5}^{+}(z)}{d z}=\frac{26}{q}+\ldots
$$

and

$$
\frac{E_{6}^{+}(z)}{\Delta_{5}^{+}(z)}=\frac{126}{q}+\cdots
$$

are weakly holomorphic modular forms for $\Gamma_{0}^{+}(5)$ of weight 2 . We note that $M_{2}\left(\Gamma_{0}^{+}(5)\right)=\{0\}$. These imply that

$$
\frac{-63}{26 \pi i} \frac{d j_{5}^{+}(z)}{d z}=\frac{E_{6}^{+}(z)}{\Delta_{5}^{+}(z)}
$$

Moreover, we have that

$$
j^{m} \frac{d j_{5}^{+}(z)}{d z}=\frac{1}{m+1} \frac{d\left(j_{5}^{+}(z)\right)^{m+1}}{d z} \quad(m \in \mathbb{Z}, m \geq 0)
$$

Since the constant term in the Fourier expansion of $\frac{d\left(j_{5}^{+}(z)\right)^{m+1}}{d z}$ is zero, by linearity it follows that

$$
\left(j_{5}^{+}\right)^{5^{b}-r} \frac{-63 f}{26 \pi i\left(\Delta_{5}^{+}\right)^{r-1}} \frac{d j_{5}^{+}}{d z}
$$

has constant term zero. Thus we have that the constant term of

$$
\begin{aligned}
\left(j_{5}^{+}\right)^{5^{b}-r} \frac{-63 f}{26 \pi i\left(\Delta_{5}^{+}\right)^{r-1}} \frac{d j_{5}^{+}}{d z} & \equiv \frac{f E_{6}}{\Delta_{5}^{+}\left(5^{b} z\right)} \\
& \equiv\left(\sum_{n \geq 0} a_{f E_{6}}(n)\right)\left(q^{-5^{b}}+1+\ldots\right) \\
& \equiv \cdots+\left(a_{f E_{6}}\left(5^{b}\right)+a_{f E_{6}}(0)\right)+\cdots(\bmod 5)
\end{aligned}
$$

is zero modulo 5 which means

$$
a_{f E_{6}}\left(5^{b}\right) \equiv-a_{f E_{6}}(0) \equiv-a_{f}(0) \quad(\bmod 5) .
$$

References

[1] Y. J. Choie, W. Kohnen, and K. Ono, Linear relations between modular form coefficients and non-ordinary primes, Bull. London Math. Soc. 37 (2005), no. 3, 335-341.
[2] T. Miyake, Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006. x+335 pp. ISBN: 978-3-540-29592-1; 3-540-29592-5.
[3] K. Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, 102. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. viii+216 pp. ISBN: 0-8218-3368-5.
[4] J. Shigezumi, On the zeros of the Eisenstein series for $\Gamma_{0}^{*}(5)$ and $\Gamma_{0}^{*}(7)$. Kyushu J. Math. 61 (2007), no. 2, 527-549.
[5] W. Stein, Modular forms, a computational approach, With an appendix by Paul E. Gunnells. Graduate Studies in Mathematics, 79. American Mathematical Society, Providence, RI, 2007. xvi+268 pp. ISBN: 978-0-8218-3960-7; 0-8218-3960-8.
*
Department of Mathematics Education
Dongguk University-Gyeongju
Gyeongju 780-714, Republic of Korea
E-mail: young@dongguk.ac.kr

[^0]: Received October 14, 2013; Accepted November 05, 2013.
 2010 Mathematics Subject Classification: Primary 11E12, 11F11.
 Key words and phrases: modular forms, congruences.
 This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF2012R1A1A3011711).

