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2-NORM MIDPOINTS AND 2-NORMED EQUALITIES
IN 2-NORMED SPACES

SaNg-CHO CHUNG*

ABSTRACT. In this paper, we investigate some properties of 2-norm
midpoints and 2-normed equalities in 2-normed spaces.

1. Introduction and preliminaries

We assume that every space is a linear space over the field R of real
numbers.

In the 1960’s, the concept of 2-normed spaces was introduced by S.
Géhler [1, 2] and many mathematicians studied on this subject.

In this paper, under the 2-normed spaces we give easy solutions of
Theorem 2.1 of [3] in Theorem 2.3 and investigate some properties of
2-normed equalities in Theorem 2.5.

Let give us some definitions and lemmas for our main results.

DEFINITION 1.1. Let & be a linear space over R with dim X > 1 and
let [|-, ]| : X x X — R be a function satisfying the following properties:

(2N1) ||z, y|| = 0 if and only if 2 and y are linearly dependent,

(2N2) ||z, yll = lly, |,

(2N3) oz, y|| = |al||z, yl|,

(2N4) |z, y + 2] < [z, yll + ||z, 2]

for all z,y,z € & and o € R. Then the mapping ||-,-|| is called a 2-
norm on X and the pair (X, |-, -||) is called a linear 2-normed space.
Sometimes the condition (2N4) called the triangle inequality.

REMARK 1.2. We have some basic properties for a linear 2-normed
space X over R with dim X > 1.
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(1) For all z,y in X, we have 0 < ||z, y||.
(2) For all a in R and z,y in X, we have ||z, y|| = ||z, y + azx].
(3) For all z,y, z in X', we have

s 2l = lly, 2l [ < [l =y, 2] < [l 2[] + [ly, 2]
and
iz, zll = My, 2l | < [z + g, 2] < [l 2] + [ly, 2.
In particular, if m = min{||z, z||, ||y, ||}, then
—2m < |z +y, 2| = |z -y, 2[| <2m.

Proof. (1) and (2) follow from the definitions of 2-normed spaces.
(3) For all x,y,z in X, we have ||z, z|| = |z —y+y, 2| < ||z —v, 2| +

Iy, z||. Hence we have ||z, z[| — ||y, || < ||lz —y, |-
On the other hand, ||y, 2| = ||y — z + =, 2] < [ly — =z, 2|| + ||z, 2]|, or
1y, 2l = ||z, 2|l < [ly = =, 2] = [l — y, 2[|. Therefore we get
iz, 2l =My, 2l | < llz =, 2]-
The other parts follows from (2N2), (2N3) and (2N4). O

DEFINITION 1.3. A sequence {z,} in a linear 2-normed space X
is called a convergent sequence if there is a point x € X such that
limy, o0 ||zn, — @,y|| = 0 for all y € X. If {x,} converges to x, write
xn, — x as n — oo and call z the limit of {z,}. In this case, we also
write lim, o0 T, = T.

THEOREM 1.4. Let X be a linear 2-normed space with dimX = r.
Suppose that {x,} is a sequence in X and {y1,y2,--- ,yr} Is a basis of
X. Then for a point x € X we have the following.

(1) limy, p—oo ||2n — Tm,y|| =0 for all y € X if and only if

limy, oo ||Tn — Tm, yil| =0 for ¢ =1,2,--- 7.
(2) limy, pooo ||z —z,y|| =0 for all y € X if and only if
limp, oo [|2n — 2, 9| =0 for i =1,2,--- ,r.
Proof. (1) (=) It is clear.
(<) For all y € X, there are numbers aq, ag, -+ ,a, € R such that

Yy = a1yy + aoys + - - - + a,y,. Hence we have
[0 = Zm, yll = [[#n — Tm, 01y1 + q2y2 + -+ + aryy |
<|lzn — zmyayl| + - + |20 — Zm, qrye |
= laalllzn = zm, g1l + - + |l lzn — zm, yrl.

Therefore we have limy, ,— 00 ||Zrn, — Tm, y|| = 0 for all y € X.
(2) The proof is similar to (1). O
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LEMMA 1.5. Let X be a linear 2-normed space over R with dim X > 1.
Let {z,,} be a sequence in X and x be a vector of X. Then the following
are equivalent.

(1) The vector x is a limit of {x,,}. That is, for all y in X,

lim, oo ||zn —x,y|| =0 .
(2) For all a,y in X, limy, .o [|[@ — 2, yl| = |la — 2, y]|.
(3) For all a,y in X} hmn%oo ||CL —Tn,Y — xn” = ||a’ -5y - SUH

(4) For ally in X, limy,_,o0 ||xr, — y,x — y|| = 0.

Proof. (1) = (2) By remark 1.2(3), for all a,y in X, we have the

following.
o =zn,yll = lla =z, 9]l | < [|lzn — 2, yll.

Hence we have lim,, . ||a — zp, y|| = ||la — x,y|| for all a,y in X.

(2) = (3) For all a,y in X, we have lim,_,« || — n, y — 24|
=lim, o0 |l — 2p,y —a|| = |la — 2,y — a|| = ||a — z,y — x|

(3) = (4) Replacing a by y and y by z, we have

Jim [ly —zp, 2z =yl = lm |ly —zp, 2 —2n| = [ly — 2,2 — 2| = 0
for all y in X.
(4) = (1) For all y in X, we have the following.
[2n =z, yll = llzn — 2+ 4,9l = [lon — (2 —y), 2 — (2 —y)||.
Hence we have lim, . |2y, — z,y|| = 0 for all y in X. O

THEOREM 1.6 (cf. [4] Lemma 1.6). For a convergent sequence {z}

in a linear 2-normed space X, we have lim, o ||z, yl| = ||z,y]| =
|| imy, 00 T, y|| for all y € X.
Proof. In Lemma 1.5(2), take a = 0. O

The following lemma has fewer conditions than Lemma 1.2 of [4]. We
need only two linearly independent vectors.

LEMMA 1.7 (cf. [4] Lemma 1.2). Let (X, |-,-||) be a linear 2-normed
space with dim X > 1. If ||z, y|| = ||z, z|| = O for linearly independent
y,z € X, then x = 0.

In particular, If ||x,y|| =0 for all y € X, then z = 0.

Proof. By the hypothesis, x and y are linearly dependent, and also
x and z are linearly dependent. Then since y and z are not zero, there
exist non-zero scalars o and o’ such that ax+ 8y =0 and o’z + 3’2 =0
for some scalars 3 and 3’. Hence we have

/6/

__h _
r=—-—yand r = ——z.
o e
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Thus we have .
—éy + ﬁ,z =0.
o e
Since y and z are linearly independent, we have 3 = (3 = 0. Therefore
we have z = 0. O

2. Main results

Firstly, we define the 2-metric space.

DEFINITION 2.1. A 2-metric space is a space X with a real-valued
nonnegative function d defined on X x X x X which the following con-
ditions:

(2M1) For each pair of elements z,y in X with = # y, there exists an
element z in X such that d(z,y,z) # 0,
(2M2) d(z,y, z) = 0 whenever at least two of the points z,y, z are equal,
(2M3) d(:[j, Y, Z) = d($> Zs y) = d(y> 2y .CE),
(2M4) d(z,y,z) < d(z,y,w) + d(z,w, 2) + d(w, y, 2),
for all z,y,z,w in X. d is called a 2-metric the space X and (X,d) is
called a 2-metric space.

From the condition (2M3), we can easily show that d(z,y, z) = d(z, z,y)
= d(y7 Zs .ZL‘) = d(yv €L, Z) = d(zv €, y) = d(z7 Y, (L‘)

If (X,d) is a linear 2-normed space, then the function d(z,y,z) =
|z — z,y — z|| defines a 2-metric on X'. Therefore every 2-normed space
will be considered to be a 2-metric space with the 2-metric defined in
this sense.

Three or more points p1, p2, p3, - -+ are said to be collinear if they lie
on a single straight line, that is, for each ¢ = 3,4,5,---, if p; # p2 and
p1 # pi, then there is a real number ¢; such that p; — pa = t;(p1 — pi).

DEFINITION 2.2. A point p in a linear 2-normed space X is called

2-norm midpoint of 3 non-collinear points z,y,z in X if d(z,y,p) =

d(z,p,2) = d(p,y, 2) = 3d(z,y, 2).

For non-collinear points z,y,z in X, let T(z,y,2) = {w € X :
d(z,y,2) = d(z,y,w) + d(z,w, z) + d(w,y,2)}. T(x,y,z) will be called
the triangle with vertices x,y and z. Furthermore, we will designate the
area of T'(z,y,z) to be d(z,y,z). A point p of X will be a center of
T(x,y, z) if p is a 2-norm midpoint of =,y and z.

The following theorem was proved in [3]. We give another easy solu-
tions.
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THEOREM 2.3 ([3] THEOREM 2.1). Suppose that X is a linear 2-
normed space.

(1) x € T(a,b,c) ifand only if x —y € T(a — y,b — y,c — y).
(2) T(a+p,b+p,c+p)=T(a,b,c)+p.
(3) For a real number «, we have

aT'(a,b,c) = T(aa, ab, ac).

(4) Let a sequence {x,} in X converge to a point x in X. If {x,} is a
sequence in T'(a, b, ¢) for some non-collinear points of X, then x is
a point in T'(a,b, c).

Proof. (1) Suppose that = € T'(a,b,c). Then we have
d(a,b,c) =d(a,b,x) + d(a,z,c) + d(z,b,c)
or
la—ba—c||=|a—z,b—z|+ b —z,c—z| + |lc —z,a — z
if and only if
la—y—(b-y)a—y—(c—y)l
= lla-y—(z-y)b-—y—(x—y)
Flo—y—(@—-y)c—y—(z—y
tlle—y—(@—-y)a-y—(z—-y

for all y € X. Therefore we have z —y € T'(a — y,b — y,c — y).
(2) Suppose that z € T'(a + p,b+ p,c+ p). Then we have

d(a+p,b+p,c+p)
= dla+p,b+p,x)+dla+p,z,c+p)+dz,b+p,c+Dp)
or
la+p—(b+p)at+p—(c+p)
= llatp—2,b+p—z
+lo+p—zctp—z|+lc+tp—=z,a+p—z
if and only if
la—b,a—c|=a—(z—p),b—(z—p
+ b= (z —p),c— (= —p)||
+ lle = (z = p),a—(z —p)|.
Therefore we have x —p € T'(a,b,c) or x € T'(a,b,c) + p.
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(3) We may assume that « is not zero. For all y € aT'(a, b, c), there
is a point x € T'(a, b, ¢) such that y = ax. Therefore we have
d(a,b,c) =d(a,b,x) + d(a,z,c) + d(z,b,c)
or
la —ba—c||=lla—z,b—z||+||b—z,c—z| +|c—2z,a—z|.

Hence from multiplying both sides by |a|?, we have

|loa — ab, va — acl|

= |laa — az,ab — az|| + ||ab — az, ac — azx|| + ||ac — ax, aa — ax||.

Thus we have y = ax € T(«aa, ab, ac).
On the other hand, for all x € T'(«aa, ab, ac), we have

d(aa, ab, ac) = d(aa, ab, x) + d(aa, z, ac) + d(x, ab, ac)
or
|laa — ab, aa — acl|
= [laa —z,ab—z| + ||ab — z,ac — x| + ||ac — z, aa — z||.
Hence from dividing both sides by |a|?, we have

b=l o= Fo- Eo o= o 2] o - 5]
a (0% « (0% a «

Thus we have = € T(a,b,c) or x € T (a,b,c).

(4) Assume that z, € T(a,b,c) and x,, — = as n — oo. Then we
have d(a,b,c) = d(a,b, z,) + d(a,xn,c) + d(zy, b, c). Since d(a,b, z,) =
la — zp, b — x|, by lemma 1.5 we have lim,,_,o, d(a, b, z,) = d(a,b, x).
Hence we have

d(a,b,c) = lim d(a,b,c)
= lim (d(a, b, zy,) + d(a, zy,c) + d(xy, b, c))

n

=d(a,b,x) 4+ d(a,z,c) + d(z,b, c).
Therefore z € T(a, b, ¢). O

DEFINITION 2.4. Let X be a linear 2-normed space. For two points
b,cin X, let E(b,c) ={x € X : ||lx,b+¢|| = ||z, b]| + ||z, c||}. We will call
E(b,c)(= E(c,b)) the 2-norm equality with respect to b and c.

If the set {z, b} or the set {x, ¢} is linearly dependent, then z €
E(b,c). Hence E(b,c) is a non-empty set.
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THEOREM 2.5. Let b and ¢ be points in a linear 2-normed space X .
Then we have the following.

(1) For allb € X and non-negative real number o, we have E(b, ab) =
X. For all non-zero b € X and negative real number «, we have
E(b,ab) = {pb: 8 € R}.

(2) For all non-zero o € R and x € E(b,c), we have

E(b,c) = aE(b,c) = E(ab,ac) = E(b+ ax,c) = E(b,c + ax).

(3) If ||z,b+ c|| = 0 for a non-zero point x € E(b,c), then x, b and ¢
are pairwise linearly dependent.

Therefore if b and ¢ are linearly independent and a non-zero
point x € E(b,c), then ||x,b+ ¢|| # 0 or = and b+ ¢ are linearly
independent.

(4) The points b and ¢ are linearly dependent if and only if E(b,c) is
a subspace of X.

In this case, the dimension of E(b,c) over R is 1 or dim X'

(5) A sequence {x,} in X converges to a point x in X. If {z,} is a
sequence in E(b,c), then x is a point in E(b, c).

Proof. (1) For all x € X, we have ||z,b + ab|]| = (1 + a)||z,b] =
||z, b|| + ||z, ab||. Therefore we have E(b,ab) = X.

Next suppose that « is a negative real number and = € E(b,ab).
Assume that = and b are linearly independent. Then we have

11+ allz,b] = llz,b+ abl| = [lz, bl| + [l ab]| = (1 + [a])|z, b].

Since ||z, b|| # 0, we have |1 +a| =1+ |af.

In case —1 < o < 0, we have 1+ a = 1 — a or @« = 0. This is
a contradiction. The other case a < —1, we have -1 —a =1 — « or
—1 = 1. These contradictions imply that = and b are linearly dependent.
Since b is not zero, there is a real number Gy such that x = Gyb. Thus
E(b,ab) C {pb: 5 € R}.

On the other hand, for all 5 € R and all b € X, we have ||3b, b+ab|| =
0 = ||8b, b|| +|8b, ab||. Thus {8b : § € R} C E(b, ab). Therefore we have
E(b,ab) = {pb: g € R}.

(2) For all = € E(b,c), we have

2,0+ ¢l = [lz, bl + ||, ¢
& llo7z,b+cll = [la™ 2, bl| + fla™ e, ]
& |z, alb+ )| = [lz, abl| + [, ac|
& zb+az+cf = ||lz,0 + az| + [z, ]
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< |z, b+ ¢+ azx|| = ||z, b]| + ||z, ¢ + ax]|.
Therefore we have
B(b,¢) = aB(b,¢) = B(a(b,e)) = E(b+ ax,c) = E(b,c+ ax).

(3) By the hypothesis we have 0 = ||z, b+ ¢| = ||z, b|| + ||z, ¢||. Hence
we have 0 = ||z, b|| = ||z, ¢||. Therefore z, b and ¢ are pairwise linearly
dependent by (2N1) and Lemma 1.7 .

(4) Let b and ¢ be linearly dependent. Then E(b,c) is X or {#b: 5 €
R} by (1). Hence E(b,c) is a subspace of X.

On the other hand, let E(b, ¢) be a subspace of X'. Since b, ¢ € E(b, c),
we have b+ ¢ € E(b,c). Then we have

0=1[b+c,b+cl=b+cbll+ b+ c cll = 2[b, .

Hence b and c¢ are linearly dependent.

(5) Assume that z, € E(b,c) and z,, — = as n — oo. Then we have
|20, b+ cl| = ||zn, b|| + (|2, |-

By lemma 1.5 we have

|z, b+cl| = lim |x,,b+ |
n—oo
= lim ([, 0l + [lzn, c[])
n—oo
= [|, bl + [|z, ]
Therefore we have z € E(b, c). O
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