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2-NORM MIDPOINTS AND 2-NORMED EQUALITIES
IN 2-NORMED SPACES

Sang-Cho Chung*

Abstract. In this paper, we investigate some properties of 2-norm
midpoints and 2-normed equalities in 2-normed spaces.

1. Introduction and preliminaries

We assume that every space is a linear space over the field R of real
numbers.

In the 1960’s, the concept of 2-normed spaces was introduced by S.
Gähler [1, 2] and many mathematicians studied on this subject.

In this paper, under the 2-normed spaces we give easy solutions of
Theorem 2.1 of [3] in Theorem 2.3 and investigate some properties of
2-normed equalities in Theorem 2.5.

Let give us some definitions and lemmas for our main results.

Definition 1.1. Let X be a linear space over R with dimX > 1 and
let ‖·, ·‖ : X × X → R be a function satisfying the following properties:

(2N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(2N2) ‖x, y‖ = ‖y, x‖,
(2N3) ‖αx, y‖ = |α|‖x, y‖,
(2N4) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖
for all x, y, z ∈ X and α ∈ R. Then the mapping ‖·, ·‖ is called a 2-
norm on X and the pair (X , ‖·, ·‖) is called a linear 2-normed space.
Sometimes the condition (2N4) called the triangle inequality.

Remark 1.2. We have some basic properties for a linear 2-normed
space X over R with dimX > 1.

Received September 31, 2013; Accepted October 30, 2013.
2010 Mathematics Subject Classification: Primary 46B06, 41A65; Secondary

30L99.
Key words and phrases: 2-normed space, 2-metric space, 2-norm midpoint, 2-

normed equality.



916 Sang-Cho Chung

(1) For all x, y in X , we have 0 ≤ ‖x, y‖.
(2) For all α in R and x, y in X , we have ‖x, y‖ = ‖x, y + αx‖.
(3) For all x, y, z in X , we have

| ‖x, z‖ − ‖y, z‖ | ≤ ‖x− y, z‖ ≤ ‖x, z‖+ ‖y, z‖.
and

| ‖x, z‖ − ‖y, z‖ | ≤ ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖.
In particular, if m = min{‖x, z‖, ‖y, z‖}, then

−2m ≤ ‖x + y, z‖ − ‖x− y, z‖ ≤ 2m.

Proof. (1) and (2) follow from the definitions of 2-normed spaces.
(3) For all x, y, z in X , we have ‖x, z‖ = ‖x− y + y, z‖ ≤ ‖x− y, z‖+

‖y, z‖. Hence we have ‖x, z‖ − ‖y, z‖ ≤ ‖x− y, z‖.
On the other hand, ‖y, z‖ = ‖y − x + x, z‖ ≤ ‖y − x, z‖ + ‖x, z‖, or

‖y, z‖ − ‖x, z‖ ≤ ‖y − x, z‖ = ‖x− y, z‖. Therefore we get

| ‖x, z‖ − ‖y, z‖ | ≤ ‖x− y, z‖.
The other parts follows from (2N2), (2N3) and (2N4).

Definition 1.3. A sequence {xn} in a linear 2-normed space X
is called a convergent sequence if there is a point x ∈ X such that
limn→∞ ‖xn − x, y‖ = 0 for all y ∈ X . If {xn} converges to x, write
xn → x as n → ∞ and call x the limit of {xn}. In this case, we also
write limn→∞ xn = x.

Theorem 1.4. Let X be a linear 2-normed space with dimX = r.
Suppose that {xn} is a sequence in X and {y1, y2, · · · , yr} is a basis of
X . Then for a point x ∈ X we have the following.

(1) limm,n→∞ ‖xn − xm, y‖ = 0 for all y ∈ X if and only if
limm,n→∞ ‖xn − xm, yi‖ = 0 for i = 1, 2, · · · , r.

(2) limm,n→∞ ‖xn − x, y‖ = 0 for all y ∈ X if and only if
limm,n→∞ ‖xn − x, yi‖ = 0 for i = 1, 2, · · · , r.

Proof. (1) (⇒) It is clear.
(⇐) For all y ∈ X , there are numbers α1, α2, · · · , αr ∈ R such that

y = α1y1 + α2y2 + · · ·+ αryr. Hence we have

‖xn − xm, y‖ = ‖xn − xm, α1y1 + α2y2 + · · ·+ αryr‖
≤ ‖xn − xm, α1y1‖+ · · ·+ ‖xn − xm, αryr‖
= |α1|‖xn − xm, y1‖+ · · ·+ |αr|‖xn − xm, yr‖.

Therefore we have limm,n→∞ ‖xn − xm, y‖ = 0 for all y ∈ X .
(2) The proof is similar to (1).
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Lemma 1.5. Let X be a linear 2-normed space over R with dimX > 1.
Let {xn} be a sequence in X and x be a vector of X . Then the following
are equivalent.

(1) The vector x is a limit of {xn}. That is, for all y in X ,
limn→∞ ‖xn − x, y‖ = 0 .

(2) For all a, y in X , limn→∞ ‖a− xn, y‖ = ‖a− x, y‖.
(3) For all a, y in X , limn→∞ ‖a− xn, y − xn‖ = ‖a− x, y − x‖.
(4) For all y in X , limn→∞ ‖xn − y, x− y‖ = 0.

Proof. (1) ⇒ (2) By remark 1.2(3), for all a, y in X , we have the
following.

| ‖a− xn, y‖ − ‖a− x, y‖ | ≤ ‖xn − x, y‖.
Hence we have limn→∞ ‖a− xn, y‖ = ‖a− x, y‖ for all a, y in X .
(2) ⇒ (3) For all a, y in X , we have limn→∞ ‖a− xn, y − xn‖

= limn→∞ ‖a− xn, y − a‖ = ‖a− x, y − a‖ = ‖a− x, y − x‖.
(3) ⇒ (4) Replacing a by y and y by x, we have

lim
n→∞ ‖y − xn, x− y‖ = lim

n→∞ ‖y − xn, x− xn‖ = ‖y − x, x− x‖ = 0

for all y in X .
(4) ⇒ (1) For all y in X , we have the following.

‖xn − x, y‖ = ‖xn − x + y, y‖ = ‖xn − (x− y), x− (x− y)‖.
Hence we have limn→∞ ‖xn − x, y‖ = 0 for all y in X .

Theorem 1.6 (cf. [4] Lemma 1.6). For a convergent sequence {xn}
in a linear 2-normed space X , we have limn→∞ ‖xn, y‖ = ‖x, y‖ =
‖ limn→∞ xn, y‖ for all y ∈ X .

Proof. In Lemma 1.5(2), take a = 0.

The following lemma has fewer conditions than Lemma 1.2 of [4]. We
need only two linearly independent vectors.

Lemma 1.7 (cf. [4] Lemma 1.2). Let (X , ‖·, ·‖) be a linear 2-normed
space with dimX > 1. If ‖x, y‖ = ‖x, z‖ = 0 for linearly independent
y, z ∈ X , then x = 0.

In particular, If ‖x, y‖ = 0 for all y ∈ X , then x = 0.

Proof. By the hypothesis, x and y are linearly dependent, and also
x and z are linearly dependent. Then since y and z are not zero, there
exist non-zero scalars α and α′ such that αx+βy = 0 and α′x+β′z = 0
for some scalars β and β′. Hence we have

x = −β

α
y and x = −β′

α′
z.
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Thus we have

−β

α
y +

β′

α′
z = 0.

Since y and z are linearly independent, we have β = β′ = 0. Therefore
we have x = 0.

2. Main results

Firstly, we define the 2-metric space.

Definition 2.1. A 2-metric space is a space X with a real-valued
nonnegative function d defined on X × X × X which the following con-
ditions:

(2M1) For each pair of elements x, y in X with x 6= y, there exists an
element z in X such that d(x, y, z) 6= 0,

(2M2) d(x, y, z) = 0 whenever at least two of the points x, y, z are equal,
(2M3) d(x, y, z) = d(x, z, y) = d(y, z, x),
(2M4) d(x, y, z) ≤ d(x, y, w) + d(x,w, z) + d(w, y, z),
for all x, y, z, w in X . d is called a 2-metric the space X and (X , d) is
called a 2-metric space.

From the condition (2M3), we can easily show that d(x, y, z) = d(x, z, y)
= d(y, z, x) = d(y, x, z) = d(z, x, y) = d(z, y, x).

If (X , d) is a linear 2-normed space, then the function d(x, y, z) =
‖x− z, y − z‖ defines a 2-metric on X . Therefore every 2-normed space
will be considered to be a 2-metric space with the 2-metric defined in
this sense.

Three or more points p1, p2, p3, · · · are said to be collinear if they lie
on a single straight line, that is, for each i = 3, 4, 5, · · · , if p1 6= p2 and
p1 6= pi, then there is a real number ti such that p1 − p2 = ti(p1 − pi).

Definition 2.2. A point p in a linear 2-normed space X is called
2-norm midpoint of 3 non-collinear points x, y, z in X if d(x, y, p) =
d(x, p, z) = d(p, y, z) = 1

3d(x, y, z).
For non-collinear points x, y, z in X , let T (x, y, z) = {w ∈ X :

d(x, y, z) = d(x, y, w) + d(x,w, z) + d(w, y, z)}. T (x, y, z) will be called
the triangle with vertices x, y and z. Furthermore, we will designate the
area of T (x, y, z) to be d(x, y, z). A point p of X will be a center of
T (x, y, z) if p is a 2-norm midpoint of x, y and z.

The following theorem was proved in [3]. We give another easy solu-
tions.
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Theorem 2.3 ([3] THEOREM 2.1). Suppose that X is a linear 2-
normed space.

(1) x ∈ T (a, b, c) if and only if x− y ∈ T (a− y, b− y, c− y).
(2) T (a + p, b + p, c + p) = T (a, b, c) + p.
(3) For a real number α, we have

αT (a, b, c) = T (αa, αb, αc).

(4) Let a sequence {xn} in X converge to a point x in X . If {xn} is a
sequence in T (a, b, c) for some non-collinear points of X , then x is
a point in T (a, b, c).

Proof. (1) Suppose that x ∈ T (a, b, c). Then we have

d(a, b, c) = d(a, b, x) + d(a, x, c) + d(x, b, c)

or

‖a− b, a− c‖ = ‖a− x, b− x‖+ ‖b− x, c− x‖+ ‖c− x, a− x‖
if and only if

‖a− y − (b− y), a− y − (c− y)‖
= ‖a− y − (x− y), b− y − (x− y)‖

+ ‖b− y − (x− y), c− y − (x− y)‖
+ ‖c− y − (x− y), a− y − (x− y)‖

for all y ∈ X . Therefore we have x− y ∈ T (a− y, b− y, c− y).
(2) Suppose that x ∈ T (a + p, b + p, c + p). Then we have

d(a + p, b + p, c + p)

= d(a + p, b + p, x) + d(a + p, x, c + p) + d(x, b + p, c + p)

or

‖a + p− (b + p), a + p− (c + p)‖
= ‖a + p− x, b + p− x‖

+ ‖b + p− x, c + p− x‖+ ‖c + p− x, a + p− x‖
if and only if

‖a− b, a− c‖ = ‖a− (x− p), b− (x− p)‖
+ ‖b− (x− p), c− (x− p)‖
+ ‖c− (x− p), a− (x− p)‖.

Therefore we have x− p ∈ T (a, b, c) or x ∈ T (a, b, c) + p.
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(3) We may assume that α is not zero. For all y ∈ αT (a, b, c), there
is a point x ∈ T (a, b, c) such that y = αx. Therefore we have

d(a, b, c) = d(a, b, x) + d(a, x, c) + d(x, b, c)

or

‖a− b, a− c‖ = ‖a− x, b− x‖+ ‖b− x, c− x‖+ ‖c− x, a− x‖.
Hence from multiplying both sides by |α|2, we have

‖αa− αb, αa− αc‖
= ‖αa− αx, αb− αx‖+ ‖αb− αx, αc− αx‖+ ‖αc− αx, αa− αx‖.

Thus we have y = αx ∈ T (αa, αb, αc).
On the other hand, for all x ∈ T (αa, αb, αc), we have

d(αa, αb, αc) = d(αa, αb, x) + d(αa, x, αc) + d(x, αb, αc)

or

‖αa− αb, αa− αc‖
= ‖αa− x, αb− x‖+ ‖αb− x, αc− x‖+ ‖αc− x, αa− x‖.

Hence from dividing both sides by |α|2, we have

‖a− b, a− c‖ =
∥∥∥a− x

α
, b− x

α

∥∥∥ +
∥∥∥b− x

α
, c− x

α

∥∥∥ +
∥∥∥c− x

α
, a− x

α

∥∥∥ .

Thus we have
x

α
∈ T (a, b, c) or x ∈ αT (a, b, c).

(4) Assume that xn ∈ T (a, b, c) and xn → x as n → ∞. Then we
have d(a, b, c) = d(a, b, xn) + d(a, xn, c) + d(xn, b, c). Since d(a, b, xn) =
‖a − xn, b − xn‖, by lemma 1.5 we have limn→∞ d(a, b, xn) = d(a, b, x).
Hence we have

d(a, b, c) = lim
n→∞ d(a, b, c)

= lim
n→∞(d(a, b, xn) + d(a, xn, c) + d(xn, b, c))

= d(a, b, x) + d(a, x, c) + d(x, b, c).

Therefore x ∈ T (a, b, c).

Definition 2.4. Let X be a linear 2-normed space. For two points
b, c in X , let E(b, c) = {x ∈ X : ‖x, b+ c‖ = ‖x, b‖+ ‖x, c‖}. We will call
E(b, c)(= E(c, b)) the 2-norm equality with respect to b and c.

If the set {x, b} or the set {x, c} is linearly dependent, then x ∈
E(b, c). Hence E(b, c) is a non-empty set.
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Theorem 2.5. Let b and c be points in a linear 2-normed space X .
Then we have the following.

(1) For all b ∈ X and non-negative real number α, we have E(b, αb) =
X . For all non-zero b ∈ X and negative real number α, we have
E(b, αb) = {βb : β ∈ R}.

(2) For all non-zero α ∈ R and x ∈ E(b, c), we have

E(b, c) = αE(b, c) = E(αb, αc) = E(b + αx, c) = E(b, c + αx).

(3) If ‖x, b + c‖ = 0 for a non-zero point x ∈ E(b, c), then x, b and c
are pairwise linearly dependent.

Therefore if b and c are linearly independent and a non-zero
point x ∈ E(b, c), then ‖x, b + c‖ 6= 0 or x and b + c are linearly
independent.

(4) The points b and c are linearly dependent if and only if E(b, c) is
a subspace of X .

In this case, the dimension of E(b, c) over R is 1 or dimX .
(5) A sequence {xn} in X converges to a point x in X . If {xn} is a

sequence in E(b, c), then x is a point in E(b, c).

Proof. (1) For all x ∈ X , we have ‖x, b + αb‖ = (1 + α)‖x, b‖ =
‖x, b‖+ ‖x, αb‖. Therefore we have E(b, αb) = X .

Next suppose that α is a negative real number and x ∈ E(b, αb).
Assume that x and b are linearly independent. Then we have

|1 + α|‖x, b‖ = ‖x, b + αb‖ = ‖x, b‖+ ‖x, αb‖ = (1 + |α|)‖x, b‖.
Since ‖x, b‖ 6= 0, we have |1 + α| = 1 + |α|.

In case −1 ≤ α < 0, we have 1 + α = 1 − α or α = 0. This is
a contradiction. The other case α < −1, we have −1 − α = 1 − α or
−1 = 1. These contradictions imply that x and b are linearly dependent.
Since b is not zero, there is a real number β0 such that x = β0b. Thus
E(b, αb) ⊂ {βb : β ∈ R}.

On the other hand, for all β ∈ R and all b ∈ X , we have ‖βb, b+αb‖ =
0 = ‖βb, b‖+‖βb, αb‖. Thus {βb : β ∈ R} ⊂ E(b, αb). Therefore we have
E(b, αb) = {βb : β ∈ R}.

(2) For all x ∈ E(b, c), we have

|x, b + c‖ = ‖x, b‖+ ‖x, c‖
⇔ ‖α−1x, b + c‖ = ‖α−1x, b‖+ ‖α−1x, c‖
⇔ ‖x, α(b + c)‖ = ‖x, αb‖+ ‖x, αc‖
⇔ ‖x, b + αx + c‖ = ‖x, b + αx‖+ ‖x, c‖
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⇔ ‖x, b + c + αx‖ = ‖x, b‖+ ‖x, c + αx‖.
Therefore we have

E(b, c) = αE(b, c) = E(α(b, c)) = E(b + αx, c) = E(b, c + αx).

(3) By the hypothesis we have 0 = ‖x, b + c‖ = ‖x, b‖+ ‖x, c‖. Hence
we have 0 = ‖x, b‖ = ‖x, c‖. Therefore x, b and c are pairwise linearly
dependent by (2N1) and Lemma 1.7 .

(4) Let b and c be linearly dependent. Then E(b, c) is X or {βb : β ∈
R} by (1). Hence E(b, c) is a subspace of X .

On the other hand, let E(b, c) be a subspace of X . Since b, c ∈ E(b, c),
we have b + c ∈ E(b, c). Then we have

0 = ‖b + c, b + c‖ = ‖b + c, b‖+ ‖b + c, c‖ = 2‖b, c‖.
Hence b and c are linearly dependent.

(5) Assume that xn ∈ E(b, c) and xn → x as n → ∞. Then we have
‖xn, b + c‖ = ‖xn, b‖+ ‖xn, c‖.

By lemma 1.5 we have

‖x, b + c‖ = lim
n→∞ ‖xn, b + c‖

= lim
n→∞(‖xn, b‖+ ‖xn, c‖)

= ‖x, b‖+ ‖x, c‖
Therefore we have x ∈ E(b, c).

References
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