
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 26, No. 4, November 2013
http://dx.doi.org/10.14403/jcms.2013.26.4.907

ON THE STABILITY OF A GENERAL ADDITIVE
FUNCTIONAL INEQUALITY IN BANACH SPACES

Sang-Cho Chung*

Abstract. In this paper, we prove the generalized Hyers-Ulam
stability of the additive functional inequality

‖f(2x1) + f(2x2) + · · ·+ f(2xn)‖ ≤ ‖tf(x1 + x2 + · · ·+ xn)‖
in Banach spaces where a positive integer n ≥ 3 and a real number
t such that 2 ≤ t < n.

1. Introduction

In 1940, S. M. Ulam [4] suggested the stability problem of functional
equations concerning the stability of group homomorphisms.

In the next year, D. H. Hyers [1] gave a first (partial) affirmative
answer to the question of Ulam for Banach spaces as follows: If δ > 0 and
if f : X → Y is a mapping between Banach spaces X and Y satisfying∥∥f(x + y)− f(x)− f(y)

∥∥ ≤ δ

for all x, y ∈ X , then there is a unique additive mapping A : X → Y
such that

∥∥f(x)−A(x)
∥∥ ≤ δ for all x, y ∈ X .

This type is called the Hyers-Ulam stability.
Throughout this paper, let X be a normed linear space and Y a

Banach space. Let f : X → Y be a mapping. In 2007, C. Park, Y. S.
Cho and M. H. Han [3] proved the generalized Hyers-Ulam stability of
the additive functional inequality∥∥f(x) + f(y) + f(z)

∥∥ ≤ ∥∥f(x + y + z)
∥∥

in Banach spaces. In 2011, J. R. Lee, C. Park and D. Y. Shin [2] studied
the generalized Hyers-Ulam stability of the additive functional inequality∥∥f(2x) + f(2y) + 2f(z)

∥∥ ≤ ∥∥2f(x + y + z)
∥∥
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in Banach spaces.
In this paper, we give some generalized Hyers-Ulam stability of the

additive functional inequality

‖f(2x1) + f(2x2) + · · ·+ f(2xn)‖ ≤ ‖tf(x1 + x2 + · · ·+ xn)‖
in Banach spaces where 3 ≤ n and 2 ≤ t < n(n ∈ Z and t ∈ R).

2. Hyers-Ulam stability in Banach spaces

To obtain our main result, we need the following lemma.

Lemma 2.1. Let f : X → Y be a mapping and let 3 ≤ n and
2 ≤ t < n where n is an integer and t is a real number. Then f is
additive if and only if it satisfies

(2.1) ‖f(2x1) + f(2x2) + · · ·+ f(2xn)‖ ≤ ‖tf(x1 + x2 + · · ·+ xn)‖
for all x1, x2, · · · , xn ∈ X .

Proof. If f is additive, then clearly∥∥f(2x1) + · · ·+ f(2xn)‖ = ‖2f(x1 + · · ·+ xn)‖ ≤ ‖tf(x1 + · · ·+ xn)‖
for all xi ∈ X .

Conversely, assume that f satisfies (2.1). Letting xi = 0 in (2.1), we
gain

∥∥nf(0)
∥∥ ≤ ∥∥tf(0)

∥∥ and so f(0) = 0 by the assumpution. Putting
xi = 0 for all i = 3, · · · , n, and replacing x1, x2 by x,−x in (2.1), we get∥∥f(−x) + f(x)

∥∥ ≤ ∥∥tf(0)
∥∥ = 0 and so f(−x) = −f(x) for all x ∈ X .

Setting x1 =
x + y

2
, x2 =

−x

2
, x3 =

−y

2
, xi = 0(4 ≤ i ≤ n) in (2.1), we

have ∥∥f(x + y) + f(−x) + f(−y)
∥∥ ≤ ∥∥tf(0)

∥∥ = 0
for all x, y ∈ X . Thus we obtain f(x + y) = f(x) + f(y) for all x, y ∈
X .

Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0 and let
3 ≤ n and 2 ≤ t < n. If there is a function ϕ : X n → [0,∞) satisfying

(2.2) ‖f(2x1) + · · ·+ f(2xn)‖ ≤ ‖tf(x1 + · · ·+ xn)‖+ ϕ(x1, · · · , xn)

and
(2.3)

ϕ̃(x1, · · · , xn) :=
∞∑

j=0

1
2j

ϕ
(
(−2)jx1, (−2)jx2, (−2)jx3, x4, · · · , xn

)
< ∞
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for all x1, · · · , xn ∈ X , then there exists a unique additive mapping
A : X → Y such that

(2.4)
∥∥f(x)−A(x)

∥∥ ≤ 1
2
ϕ̃

(
x,−x

2
,−x

2
, 0, · · · , 0

)

for all x ∈ X .

Proof. Replacing x1, x2, x3, xi(4 ≤ i) by (−2)n+1 x

2
, (−2)n x

2
, (−2)n x

2
, 0,

respectively, and dividing by 2n+1 in (2.2), since f(0) = 0, we get
∥∥∥∥
f
(
(−2)n+1x

)

(−2)n+1
− f

(
(−2)nx

)

(−2)n

∥∥∥∥

≤ 1
2n+1

ϕ
(
(−2)n+1 x

2
, (−2)n x

2
, (−2)n x

2
, 0, · · · , 0

)

for all x ∈ X and all nonnegative integers n. From the above inequality,
we have ∥∥∥∥

f
(
(−2)nx

)

(−2)n
− f

(
(−2)mx

)

(−2)m

∥∥∥∥(2.5)

≤
n−1∑

j=m

∥∥∥∥
f
(
(−2)j+1x

)

(−2)j+1
− f

(
(−2)jx

)

(−2)j

∥∥∥∥

≤
n−1∑

j=m

1
2j+1

ϕ
(
(−2)jx, (−2)j−1x, (−2)j−1x, 0, · · · , 0

)

for all x ∈ X and all nonnegative integers m,n with m < n. By the
condition (2.3), the sequence

{
f((−2)nx)

(−2)n

}
is a Cauchy sequence for all

x ∈ X . Since Y is complete, the sequence
{

f((−2)nx)
(−2)n

}
converges for all

x ∈ X . So we can define a mapping A : X → Y by

A(x) := lim
n→∞

f ((−2)nx)
(−2)n

for all x ∈ X .
In order to prove that A satisfies (2.4), taking m = 0 and letting n

tend to ∞ in (2.5), then we have the following inequality (2.4).
∥∥∥∥A

(
x
)− f

(
x
)∥∥∥∥ ≤

∞∑

j=0

1
2j+1

ϕ
(
(−2)jx, (−2)j−1x, (−2)j−1x, 0, · · · , 0

)

=
1
2
ϕ̃

(
x,−x

2
,−x

2
, 0, · · · , 0

)
.



910 Sang-Cho Chung

Next we show that A is additive. Replacing xi by (−2)nxi for all
i = 1, 2, · · · , n, and dividing by 2n in (2.2), we obtain

∥∥∥∥
f
(
(−2)n2x1

)

(−2)n
+

f
(
(−2)n2x2

)

(−2)n
+ · · ·+ f

(
(−2)n2xn

)

(−2)n

∥∥∥∥

≤
∥∥∥∥t

f ((−2)n(x1 + x2 + · · ·+ xn))
(−2)n

∥∥∥∥

+
1
2n

ϕ
(
(−2)nx1, (−2)nx2, · · · , (−2)nxn)

for all x1, x2, · · · , xn ∈ X and all nonnegative integers n. Since (2.3)
gives that

lim
n→∞

1
2n

ϕ
(
(−2)nx1, (−2)nx2, · · · , (−2)nxn) = 0

for all x1, x2, · · · , xn ∈ X , letting n tend to ∞ in the above inequality,
we have

∥∥∥∥A
(
2x1

)
+ A

(
2x2

)
+ · · ·+ A

(
2xn

)∥∥∥∥ ≤
∥∥∥∥tA

(
x1 + x2 + · · ·+ xn

)∥∥∥∥
so A is additive by Lemma 2.1.

Let A′ : X → Y be another additive mapping satisfying (2.4). Since
both A and A′ are additive, we have, for all positive integer n

∥∥A(x)−A′(x)
∥∥

=
1
2n

∥∥A
(
(−2)nx

)−A′
(
(−2)nx

)∥∥

≤ 1
2n

(∥∥A
(
(−2)nx

)− f
(
(−2)nx

)∥∥ +
∥∥f

(
(−2)nx

)−A′
(
(−2)nx

)∥∥)

≤ 1
2n

ϕ̃
(
(−2)nx, (−2)n−1x, (−2)n−1x, 0, · · · , 0

)

=
∞∑

j=n

1
2j

ϕ
(
(−2)j−nx, (−2)j−1−nx, (−2)j−1−nx, 0, · · · , 0

)

which goes to zero as n → ∞ for all x ∈ X by (2.3). Therefore, A is a
unique additive mapping satisfying (2.4), as desired.

Theorem 2.3. Let f : X → Y be a mapping and let 3 ≤ n and
2 ≤ t < n. If there is a function ϕ : X n → [0,∞) satisfying

(2.6) ‖f(2x1) + · · ·+ f(2xn)‖ ≤ ‖tf(x1 + · · ·+ xn)‖+ ϕ(x1, · · · , xn).



On the stability of a general additive functional inequality 911

where

ϕ̃(x1, x2, · · · , xn)

:=
∞∑

j=1

2jϕ

(
x1

(−2)j
,

x2

(−2)j
,

x3

(−2)j
, x4, · · · , xn

)
< ∞(2.7)

for all x1, x2, · · · , xn ∈ X , then there exists a unique additive mapping
A : X → Y such that

(2.8)
∥∥f(x)−A(x)

∥∥ ≤ 1
2
ϕ̃

(
x,−x

2
,−x

2
, 0, · · · , 0

)

for all x ∈ X .

Proof. We have ϕ(0, · · · , 0) = 0 by (2.7), and so f(0) = 0 by (2.6).
Replacing x1, x2, x3, xi(4 ≤ i) by

x

(−2)n
,

x

(−2)n+1
,

x

(−2)n+1
, 0, respec-

tively, and multiplying by 2n−1 in (2.6), since f(0) = 0, we get
∥∥∥∥(−2)n−1f

(
x

(−2)n−1

)
− (−2)nf

(
x

(−2)n

) ∥∥∥∥

≤ 2n−1ϕ

(
x

(−2)n
,

x

(−2)n+1
,

x

(−2)n+1
, 0, · · · , 0

)

for all x ∈ X and all nonnegative integers n. From the above inequality,
we have ∥∥∥∥(−2)nf

(
x

(−2)n

)
− (−2)mf

(
x

(−2)m

) ∥∥∥∥(2.9)

≤
n∑

j=m+1

∥∥∥∥(−2)jf

(
x

(−2)j

)
− (−2)j−1f

(
x

(−2)j−1

)∥∥∥∥

≤
n∑

j=m+1

2j−1ϕ

(
x

(−2)j
,

x

(−2)j+1
,

x

(−2)j+1
, 0, · · · , 0

)

for all x ∈ X and all nonnegative integers m,n with m < n. By the

condition (2.7), the sequence
{

(−2)nf

(
x

(−2)n

)}
is a Cauchy sequence

for all x ∈ X . Since Y is complete, the sequence
{

(−2)nf

(
x

(−2)n

)}

converges for all x ∈ X . So we can define a mapping A : X → Y by

A(x) := lim
n→∞

{
(−2)nf

(
x

(−2)n

)}

for all x ∈ X .
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In order to prove that A satisfies (2.8), taking m = 0 and letting n
tend to ∞ in (2.9), then we have the following inequality (2.8).

∥∥∥∥A
(
x
)− f

(
x
)∥∥∥∥ ≤

∞∑

j=0

2j−1ϕ

(
x

(−2)j
,

x

(−2)j+1
,

x

(−2)j+1
, 0, · · · , 0

)

=
1
2
ϕ̃

(
x,−x

2
,−x

2
, 0, · · · , 0

)
.

Next we show that A is additive. Replacing xi by
xi

(−2)n
for all

i = 1, 2, · · · , n, and multiplying by 2n in (2.6), we obtain
∥∥∥∥(−2)nf

(
2x1

(−2)n

)
+ (−2)nf

(
2x2

(−2)n

)
+ · · ·+ (−2)nf

(
2xn

(−2)n

)∥∥∥∥

≤
∥∥∥∥t(−2)nf

(
(x1 + x2 + · · ·+ xn)

(−2)n

)∥∥∥∥

+ 2nϕ

(
x1

(−2)n
,

x2

(−2)n
, · · · ,

xn

(−2)n

)

for all x1, x2, · · · , xn ∈ X and all nonnegative integers n. Since (2.7)
gives that

lim
n→∞ 2nϕ

(
x1

(−2)n
,

x2

(−2)n
, · · · ,

xn

(−2)n

)
= 0

for all x1, x2, · · · , xn ∈ X , letting n tend to ∞ in the above inequality,
we have

∥∥∥∥A
(
2x1

)
+ A

(
2x2

)
+ · · ·+ A

(
2xn

)∥∥∥∥ ≤
∥∥∥∥tA

(
x1 + x2 + · · ·+ xn

)∥∥∥∥
so A is additive by Lemma 2.1.

Let A′ : X → Y be another additive mapping satisfying (2.8). Since
both A and A′ are additive, we have, for all positive integer n

‖A(x)−A′(x)
∥∥

= 2n

∥∥∥∥A

(
x

(−2)n

)
−A′

(
x

(−2)n

)∥∥∥∥

≤ 2n

(∥∥∥∥A

(
x

(−2)n

)
− f

(
x

(−2)n

) ∥∥∥∥ +
∥∥∥∥f

(
x

(−2)n

)
−A′

(
x

(−2)n

)∥∥∥∥
)

≤ 2nϕ̃

(
x1

(−2)n
,

−x2

(−2)n+1
,

−x3

(−2)n+1
, 0, · · · , 0

)
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=
∞∑

j=n+1

2jϕ

(
x1

(−2)j−n
,

−x2

(−2)j+1−n
,

−x3

(−2)j+1−n
, 0, · · · , 0

)

which goes to zero as n → ∞ for all x ∈ X by (2.7). Therefore, A is a
unique additive mapping satisfying (2.8), as desired.
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