DOI QR코드

DOI QR Code

MEASURE EXPANSIVE AND DOMINATED SPLITTING

  • 투고 : 2013.09.27
  • 심사 : 2013.10.11
  • 발행 : 2013.11.15

초록

In this paper, we show that if a nontrivial transitive set is $C^1$-stably measure expansive, then it admits a dominated splitting.

키워드

참고문헌

  1. C. Bonatti, L. J. Diaz, and E. A. Pujals, $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003), 187-222.
  2. C. Bonatti, N. Gourmelon, and T. Vivier, Perturbations of the derivative along periodic orbits, Ergodi. Th. & Dynm. Syst 26 (2006), 1307-1337.
  3. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer-Verlag, Berlin, 1976.
  4. K. Lee, G. Lu, and X. Wen, $C^1$-stably weak shadowing property of chain transitive sets, preprint.
  5. M. Lee, Continuum-wise expansive and dominated splitting, Int. Jour. of Math. Analysis, Vol. 7 (2013), no. 23, 1149-1154. https://doi.org/10.12988/ijma.2013.13113
  6. C. A. Morales, Measure expansive systems, Preprint IMPA, D083, 2011.
  7. M. J. Pacifico and J. L. Vieitez, On measure expansive diffeomorphisms, arXiv:1302.2282v1.
  8. W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. https://doi.org/10.1090/S0002-9939-1950-0038022-3
  9. D. Yang, Stably weakly shadowing transitive sets and dominated splitting, Proc. Amer. Math. Soc. 139 (2011), 2747-2751. https://doi.org/10.1090/S0002-9939-2011-10699-3