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UNIFORM LIPSCHITZ AND ASYMPTOTIC STABILITY
FOR PERTURBED DIFFERENTIAL SYSTEMS

Yoon Hoe Goo* and Yinhua Cui**

Abstract. In this paper, we investigate uniform Lipschitz and as-
ymptotic stability for perturbed differential systems using integral
inequalities.

1. Introduction

Dannan and Elaydi [7] introduced a new notion of stability, which is
called uniform Lipschitz stability (ULS), for systems of differential equa-
tions. For linear systems, the notions of uniform Lipschitz stability and
that of uniform stability are equivalent. However, for nonlinear systems,
the two notions are quite distinct. This notion of ULS lies somewhere
between uniform stability on one side and the notions of asmptotic stabil-
ity in variation of Brauer[3] and uniform stability in variation of Brauer
and Strauss[2] on the other side. Also, Elaydi and Farran [8] introduced
the notion of exponential asymptotic stability(EAS) which is a stronger
notion than that of ULS. They studied the properties of EAS dynami-
cal systems on a compact Riemannian manifold, and gave some analytic
criteria for an autonomous differential system and its perturbed systems
to be EAS. Gonzalez and Pinto[9] investigated the asymptotic behavior
and boundedness of the solutions of nonlinear differential systems.

In this paper, we investigate uniform Lipschitz and asymptotic sta-
bility for solutions of the nonlinear differential systems using integral
inequalities. The method incorporating integral inequalities takes an
important place among the methods developed for the qualitative anal-
ysis of solutions to linear and nonlinear system of differential equations.
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In the presence the method of integral inequalities is as efficient as the
direct Lyapunov’s method.

2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+ × Rn and f(t, 0) = 0. Also, consider the perturbed
differential system of (2.1)

(2.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

where g ∈ C(R+ × Rn × Rn,Rn) , g(t, 0, 0) = 0 and T is a continuous
operator mapping from C(R+,Rn) into C(R+,Rn). The symbol | · |
donotes arbitrary vector norm in Rn.

In our subsequent discussion we assume that for any two continuous
functions u, v ∈ C(I) where I is the closed interval, the operator T
satisfies the following property:

u(t) ≤ v(t), 0 ≤ t ≤ t1, t1 ∈ I,

imples Tu(t) ≤ Tv(t), 0 ≤ t ≤ t1, and |Tu| ≤ T |u|.
Let x(t, t0, x0) be denoted the unique solution of (2.1) through (t0, x0)

in R+ × Rn with x(t0, t0, x0) = x0, existing on [t0,∞). Then we can
consider the associated variational systems around the zero solution of
(2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
Before giving further details, we recall some notions of stability that

we need in the sequel[8].
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Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called
(S)stable if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such
that if |x0| < δ , then |x(t)| < ε for all t ≥ t0 ≥ 0,
(US)uniformly stable if the δ in (S) is independent of the time t0,
(ULS)uniformly Lipschitz stable if there exist M > 0 and δ > 0 such
that |x(t)| ≤ M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0,
(ULSV)uniformly Lipschitz stable in variation if there exist M > 0 and
δ > 0 such that |Φ(t, t0, x0) ≤ M for |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0,
c > 0, and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞,
(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞.

We give some related properties that we need in the sequel.
We need Alekseev formula to compare between the solutions of (2.1)

and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.2. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.3. [6] Let u, f, g, w ∈ C(R+), w(u) be nondecreasing in u
and 1

vw(u) ≤ w(u
v ) for some v > 0. If ,for some c > 0,

u(t) ≤ c +
∫ t

t0

f(s)u(s)ds +
∫ t

t0

f(s)
{∫ s

t0

g(τ)w(u(τ))dτ
}

ds, t ≥ t0 ≥ 0,

then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

g(s)ds
]
exp

(∫ t

t0

f(s)ds
)
, t0 ≤ t < b1,
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where W (u) =
∫ u
u0

ds
w(s) , u > 0, u0 > 0, W−1(u) is the inverse of W (u)

and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

g(s)ds ∈ domW−1
}

.

Lemma 2.4. [12] Let u, f, g, h ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u ,u ≤ w(u) . Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

f(s)w(u(s))ds +
∫ t

t0

g(s)
(∫ s

t0

h(τ)u(τ)dτ
)
ds, 0 ≤ t0 ≤ t.

Then
(2.6)

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(f(s) + g(s)
∫ s

t0

h(τ)dτ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.3 and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(f(s) + g(s)
∫ s

t0

h(τ)dτ))ds ∈ domW−1
}

.

Lemma 2.5. [4] Let u, f, g, h ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0

f(s)w(u(s))ds+
∫ t

t0

g(s)(
∫ s

t0

h(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(f(s) + g(s)
∫ s

t0

h(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.3 and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(f(s) + g(s)
∫ s

t0

h(τ))ds ∈ domW−1
}

.

Lemma 2.6. [10] Let u, p, q, w, and r ∈ C(R+) and suppose that, for
some c ≥ 0, we have
(2.7)

u(t) ≤ c +
∫ t

t0

p(s)
∫ s

t0

[q(τ)u(τ) + w(τ)
∫ τ

t0

r(a)u(a)da]dτds, t ≥ t0.

Then

(2.8) u(t) ≤ c exp
(∫ t

t0

p(s)
∫ s

t0

[q(τ) + w(τ)
∫ τ

t0

r(a)da]dτds
)
, t ≥ t0.
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Lemma 2.7. [12] Let u, p, q, w, r ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u. Suppose that for some c ≥ 0,
(2.9)

u(t) ≤ c +
∫ t

t0

(p(s)
∫ s

t0

(q(τ)w(u(τ)) + v(τ)
∫ τ

t0

r(a)u(a)da)dτ)ds, t ≥ t0.

Then
(2.10)

u(t) ≤ W−1
[
W (c)+

∫ t

t0

(p(s)
∫ s

t0

(q(τ)+v(τ)
∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.3 and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(p(s)
∫ s

t0

(q(τ)

+ v(τ)
∫ τ

t0

r(a)da)dτ)ds ∈ domW−1
}

.

Lemma 2.8. [14] Let u(t), f(t) ,and g(t) be real-valued nonnegative
continuous functions defined on R+, for which the inequality

u(t) ≤ u0 +
∫ t

0
f(s)u(s)ds +

∫ t

0
f(s)

(∫ s

0
g(τ)u(τ)dτ

)
ds, t ∈ R+,

holds, where u0 is a nonnegative constant. Then,

u(t) ≤ u0(1 +
∫ t

0
f(s) exp

(∫ s

0
(f(τ) + g(τ))dτ)

)
ds, t ∈ R+.

Lemma 2.9. [5] Let the following condition hold for functions u(t),
v(t) ∈ C(R+) and k(t, u, v) ∈ C(R+ × R+ × R+,R+):

u(t)−
∫ t

t0

k(s, u(s), Tu(s))ds ≤ v(t)−
∫ t

t0

k(s, v(s), T v(s))ds,

t ≥ t0 ≥ 0 and k(t, u, v) is monotone nondecreasing in u and v for each
fixed t ≥ 0. If u(t0) < v(t0), then u(t) < v(t), t ≥ t0 ≥ 0.

3. Main results

In this section, we investigate uniform Lipschitz and asymptotic sta-
bility for solutions of the nonlinear perturbed differential systems using
integral inequalities.
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Theorem 3.1. Suppose that x = 0 of (2.1) is ULS. Let the following
condition hold for (2.2):

∫ t

t0

|g(s, y(s), T y(s))|ds ≤ W (t, |y|, T |y|), 0 ≤ t0 ≤ t,

where W (t, u, v) ∈ C(R+×R+×R+,R+) is monotone nondecreasing in
u and v for each fixed t ≥ 0 with W (t, 0, 0) = 0. Assume that u(t) is
any solution of the scalar differential equation

(3.1) u′(t) = KW (t, u, Tu), u(t0) = u0 > 0,K ≥ 1,

existing on R+ such that m(t0) < u(t0). If u = 0 of (3.1) is ULS, then
y = 0 of (2.2) is also ULS whenever K|y0| < u0.

Proof. Let y(t) = y(t, t0, y0) be any solution of (2.2). By Lemma 2.2,
we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds,

where Φ(t, t0, y0) is the fundemental matrix of (2.4). Since x = 0 of (2.1)
is ULS, it is ULSV by Corollary 3.6[7]. Therefore there exist K > 0 and
δ > 0 such that |Φ(t, t0, y0)| ≤ K for t ≥ t0 ≥ 0. Thus, by the assmption,
we obtain

|y(t)| −K

∫ t

t0

W (s, |y(s)|, T |y(s)|)ds

≤ K|y0| < u0 = u(t)−K

∫ t

t0

W (s, u(s), Tu(s))ds.

Hence |y(t)| < u(t) by Lemma 2.9. Since u = 0 of (3.1) is ULS, it easily
follows that y = 0 of (2.2) is ULS.

Corollary 3.2. Suppose that x = 0 of (2.1) is ULS. Consider the
scalar differential equation

(3.2) u′(t) = KW (t, u, Tu) = Ka(t)[u +
∫ t

t0

k(s)u(s)ds],

where u0 ≥ 1,K ≥ 1 and a, k ∈ C(R+) satisfy the conditions:

(a)
∫ t
t0
|g(s, y(s), T y(s))|ds ≤ W (t, |y|, T |y|),where

∫ t
t0

g(s, y(s), Ty(s))ds

is in (2.2),
(b) M(t0) = (1 + K

∫∞
t0

a(s) exp(
∫ s
t0

(Ka(τ) + k(τ))dτ)ds) < ∞ and
b1 = ∞.

Then y = 0 of (2.2) is ULS.
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Proof. Let u(t) = u(t, t0, u0) be any solution of (3.2). Then, by
Lemma 2.8 , we obtain

|u(t)| ≤ u0

(
1 + K

∫ t

t0

a(s) exp
(∫ s

t0

(Ka(τ) + k(τ))dτ
)
ds

)
≤ M(t0)|u0|,

Hence u = 0 of (3.2) is ULS. By Theorem 3.1, the solution y = 0 of (2.2)
is ULS .

Remark 3.1. In corollary 3.2, it is needed that b1 = ∞. The condi-
tion W (∞) = ∞ is too strong and it represents situations which are not
stable. For example, if w(u) = uα, then only α ≤ 1 satisfies W (∞) = ∞
and α < 1 is not stable. See [17].

Corollary 3.3. Suppose that x = 0 of (2.1)is ULS. Consider the
scalar differential equation

(3.3) u′(t) = KW (t, u, Tu) = Ka(t)
[
u +

∫ t

t0

k(s)w(u(s))ds
]
,

where u0 ≥ 1,K ≥ 1, u,w ∈ C(R+), w(u) is nondecreasing in u and
1
vw(u) ≤ w(u

v ) for some v > 0, and a, k ∈ C(R+) satisfy the conditions:

(a)
∫ t
t0
|g(s, y(s), T y(s))|ds ≤ W (t, |y|, T |y|),

where
∫ t
t0

g(s, y(s), T y(s))ds is in (2.2),

(b) M(t0) = W−1[W (u0) +
∫∞
t0

k(s)ds] · exp(
∫∞
t0

Ka(s)ds) < ∞, b1 =
∞,and a, k ∈ L1(R+) .

Then y = 0 of (2.2) is ULS.

Proof. Let u(t) = u(t, t0, u0) be any solution of (3.3). Then, by
Lemma 2.3, we have

|u(t)| ≤ W−1
[
W (u0) +

∫ t

t0

k(s)ds
]
· exp

( ∫ t

t0

Ka(s)ds
)

= M(t0) ≤ M(t0)|u0|,
Hence u = 0 of (3.3) is ULS, and so by Theorem 3.1, the solution y = 0
of (2.2) is ULS .

Corollary 3.4. Suppose that x = 0 of (2.1) is ULS. Consider the
scalar differential equation

(3.4) u′(t) = KW (t, u, Tu) = K
[
a(t)w(u(t)) + b(t)

∫ t

t0

k(s)u(s)ds
]
,

where w ∈ C((0,∞), w(u) is nondecreasing on u and u ≤ w(u), u0 ≥ 1,
K ≥ 1 and a, b, k ∈ C(R+) satisfy the conditions:
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(a)
∫ t
t0
|g(s, y(s), T y(s))|ds ≤ W (t, |y|, T |y|),

where
∫ t
t0

g(s, y(s), T y(s))ds is in (2.2),

(b) M(t0) = W−1
[
W (u0) + K

∫∞
t0

(a(s) + b(s)
∫ s
t0

k(s)ds)
]

< ∞,

b1 = ∞, and a, b, k ∈ L1(R+) .

Then y = 0 of (2.2) is ULS.

Proof. Let u(t) = u(t, t0, u0) be any solution of (3.4). Then, Lemma
2.4, we obtain

|u(t)| ≤ W−1
[
W (u0) + K

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(s)ds)
]

≤ M(t0) ≤ M(t0)|u0|,
Hence u = 0 of (3.4) is ULS. This implies that the solution y = 0 of
(2.2) is ULS by Theorem 3.1.

Theorem 3.5. For the perturbed (2.2), we suppose that

(3.5)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ a(t)w(|y(t)|) + b(t)
∫ t

t0

k(s)|y(s)|ds,

where a, b, k ∈ C(R+),a, b, k ∈ L1(R+), w ∈ C((0,∞), and w(u) is
nondecreasing in u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0,

(3.6) M(t0) = W−1
[
W (K) + K

∫ ∞

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,

where M(t0) < ∞ and b1 = ∞. If the zero solution of (2.1) is ULSV,
the zero solution of (2.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since x = 0 of (2.1) is ULSV, there exist
K > 0 and δ > 0 such that |Φ(t, t0, y0)| ≤ K for t ≥ t0 ≥ 0. In view of
Lemma 2.2 and (3.5), we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ K|y0|+
∫ t

t0

K|y0|a(s)w(
|y(s)|
|y0| )ds

+
∫ t

t0

K|y0|b(s)
∫ s

t0

k(τ)
|y(τ)|
|y0| dτds.

Set u(t) = |y(t)||y0|−1. Then, by Lemma 2.4, we have
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|y(t)| ≤ |y0|W−1
[
W (K) + K

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
.

The above estimation yields the desired result. Hence the proof is com-
plete.

Theorem 3.6. For the perturbed (2.2), we suppose that

(3.7) |g(t, y(t), Ty(t))| ≤ a(t)w(|y(t)|) + b(t)
∫ t

t0

k(s)|y(s)|ds,

where a, b, k ∈ C(R+), a, b, k ∈ L1(R+), w ∈ C((0,∞), and w(u) is
nondecreasing in u, u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0,

(3.8) M(t0) = W−1
[
W (K) + K

∫ ∞

t0

∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτds
]
,

where M(t0) < ∞ and b1 = ∞. If the zero solution of (2.1) is ULSV,
the zero solution of (2.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Using Lemma 2.2, ULSV condition of x = 0
of (2.1), and (3.7), we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤ K|y0|+
∫ t

t0

K|y0|
∫ s

t0

[a(τ)w(
|y(τ)|
|y0| )dτds

+
∫ t

t0

K|y0|
∫ s

t0

b(τ)
∫ τ

t0

k(r)
|y(r)|
|y0| drdτ ]ds.

Set u(t) = |y(t)||y0|−1. Then, an application of Lemma 2.7 yields

|y(t)| ≤ |y0|W−1
[
W (K) + K

∫ t

t0

∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτds
]
.

Thus we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ.
This completes the proof.
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Theorem 3.7. Let the solution x = 0 of (2.1) be EASV. Assume

that the perturbing term
∫ t
t0

g(s, y(s), T y(s))ds satisfies

∫ t

t0

|g(s, y(s), T y(s))|ds

≤ e−αt
(
a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds
)
,

(3.9)

where α > 0, a, b, k, w ∈ C(R+), a, b, k ∈ L1(R+) and w(u) is nonde-
creasing in u. If
(3.10)

M(t0) = W−1
[
W (c) + K

∫ ∞

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]

< ∞, b1 = ∞,

where c = K|y0|eαt0 , then all solutions of (2.2) approch zero as t →∞
Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of

(2.1) and (2.2), respectively. Using Lemma 2.2 and (3.9), we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ K|y0|e−α(t−t0) +
∫ t

t0

Ke−α(t−s)[e−αsa(s)w(|y(s)|)

+Kb(s)e−αs

∫ s

t0

k(τ)w(|y(τ)|)dτ ]ds.

Set u(t) = |y(t)|eαt. Then, since w(u) is nondecreasing, by Lemma 2.5
we obtain

|y(t)| ≤ e−αtW−1
[
W (c) + K

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
, t ≥ t0 ≥ 0,

where c = K|y0|eαt0 . The above estimation yields the desired result.

Theorem 3.8. Let the solution x = 0 of (2.1) be EASV. Assume

that the perturbing term
∫ t
t0

g(s, y(s), T y(s))ds satisfies

(3.11) |g(t, y(t), T y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)

∫ t

t0

k(s)|y(s)|ds
)
,

where α > 0, a, b, k ∈ C(R+), a, b, k ∈ L1(R+), w(u) is nondecreasing in
u,and 1

vw(u) ≤ w(u
v ) for some v > 0. If
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M(t0) = c exp(
∫ ∞

t0

Keαs

∫ s

t0

e−ατ [a(τ)

+ b(τ)
∫ τ

t0

k(r)dr]dτds) < ∞, t ≥ t0 ≥ 0.

(3.12)

where c = K|y0|eαt0 , then all solutions of (2.2) approch zero as t →∞
Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of

(2.1) and (2.2), respectively. By the assumption, we have |Φ(t, t0, y0)| ≤
Ke−c(t−t0) for some K > 0 and c > 0. Using Lemma 2.2 and (3.11), we
obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤ K|y0|e−α(t−t0) +
∫ t

t0

Ke−α(t−s)

∫ s

t0

e−ατ [a(τ)|y(τ)|

+b(τ)
∫ τ

t0

k(r)|y(r)|dr]dτds.

Set u(t) = |y(t)|eαt. Then, since eαt ≥ 1, an application of Lemma 2.6
obtains

|y(t)| ≤ ce−αt exp
(∫ t

t0

Keαs

∫ s

t0

e−ατ [a(τ) + b(τ)
∫ τ

t0

k(r)dr]dτds
)

≤ ce−αtM(t0), t ≥ t0 ≥ 0,

where c = K|y0|eαt0 . From the above estimation, we obtain the desired
result.
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