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STABILITY OF FUNCTIONAL EQUATION AND
INEQUALITY IN FUZZY NORMED SPACES

Hark-Mahn Kim* and Yang-Hi Lee**

Abstract. In this paper, we investigate a fuzzy version of stability
theory for the following functional equation

f(x + y) + f(x− y)− 2f(x)− f(y)− f(−y) = 0

in the sense of M. Mirmostafaee and M. S. Moslehian.

1. Introduction and preliminaries

A classical question in the theory of functional equations is “when is
it true that a mapping, which approximately satisfies a functional equa-
tion, must be somehow close to an exact solution of the equation?”. Such
a problem, which has been called a stability problem of the functional
equation, was formulated by S. M. Ulam [16] in 1940. In the next year,
D. H. Hyers [5] gave a partial solution of Ulam’s problem for the case of
approximate additive mappings. Subsequently, his result was general-
ized by T. Aoki [1] for additive mappings, and by Th. M. Rassias [14] for
linear mappings, to considering the stability problem with unbounded
Cauchy differences. During the last decades, the stability problems of
functional equations have been extensively investigated by a number of
mathematicians, see [4, 6, 10, 15]. In 1984, A. K. Katsaras [8] defined
a fuzzy norm on a linear space to construct a fuzzy structure on the
space. Since then, some mathematicians have introduced several types
of fuzzy norm in different points of view. In particular, T. Bag and S. K.
Samanta [2], following that of S. C. Cheng and J. N. Mordeson [3], gave
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an idea of a fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michalek type [9]. In 2008, M. Mirmostafaee
and M. S. Moslehian [12] obtained a fuzzy version of stability for the
Cauchy functional equation:

f(x + y)− f(x)− f(y) = 0.(1.1)

In the same year, they [11] proved a fuzzy version of stability theorem
for the quadratic functional equation:

f(x + y) + f(x− y)− 2f(x)− 2f(y) = 0.(1.2)

A solution of (1.1) is called an additive mapping and a solution of (1.2)
is called a quadratic mapping.

Now, we consider the functional equation:

f(x + y) + f(x− y)− 2f(x)− f(y)− f(−y) = 0,(1.3)

which is called a Drygas functional equation. A solution of (1.3) is called
a solution of the Drygas functional equation, or called a quadratic–
additive mapping in this paper, since the equation (1.3) has exactly a
Cauchy additive mapping and a quadratic mapping as a general solution.
A stability result for the Drygas functional equation (1.3) was derived
by S.-M. Jung and P.K. Sahoo [7] and generalized by D.L. Yang [17].
In 2008, C.-G. Park [13] obtained a stability of the functional equation
(1.3) by taking and composing an additive mapping A and a quadratic
mapping Q to prove the existence of a quadratic–additive mapping F
which is close to the given mapping f .

In this paper, we investigate to get a general stability result of the
Cauchy additive and quadratic type functional equation (1.3) in the
fuzzy normed linear spaces by the manner of M. Mirmostafaee and M.S.
Moslehian [11]. To do this, we introduce a Cauchy sequence {Jnf(x)}
starting from a given mapping f , which converges to the desired mapping
F in the fuzzy settings which is a solution of (1.3), so that we can take
the desired solution F near by the approximate solution f in the fuzzy
settings only at once according to our suggested method in the paper.

2. Fuzzy stability of the functional equation (1.3)

We present to use the definition of a fuzzy normed space given in [2]
to exhibit a reasonable fuzzy version of stability for the Cauchy additive
and quadratic type functional equation in the fuzzy normed linear space.
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Let X be a real linear space. A function N : X×R→ [0, 1] (so-called
fuzzy subset) is said to be a fuzzy norm on X if for all x, y ∈ X and all
s, t ∈ R,
(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t/|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function on R and limt→∞N(x, t) = 1.
The pair (X,N) is called a fuzzy normed linear space [2]. Let (X, N) be
a fuzzy normed linear space. Let {xn} be a sequence in X. Then {xn}
is said to be convergent if there exists x ∈ X such that limn→∞N(xn −
x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence
{xn} and we denote it by N − limn→∞xn = x. A sequence {xn} in X is
called Cauchy if for each ε > 0 and each t > 0 there exists n0 such that
for all n ≥ n0 and all p > 0 we have N(xn+p−xn, t) > 1−ε. It is known
that every convergent sequence in a fuzzy normed space is Cauchy. If
each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed space is called a fuzzy Banach space.

Let (X, N) be a fuzzy normed space and (Y, N ′) a fuzzy Banach space.
For a given mapping f : X → Y , we use the abbreviation

Df(x, y) := f(x + y) + f(x− y)− 2f(x)− f(y)− f(−y)

for all x, y ∈ X. For given q > 0, the mapping f is called a fuzzy
q-almost quadratic–additive mapping, if

N ′(Df(x, y), t + s) ≥ min{N(x, sq), N(y, tq)}(2.1)

for all x, y ∈ X and all s, t ∈ (0,∞). Now, we are ready to get general
stability results in the fuzzy normed linear settings.

Theorem 2.1. Let q be a positive real number with q 6= 1
2 , 1. Suppose

that f is a fuzzy q-almost quadratic–additive mapping from a fuzzy
normed space (X, N) into a fuzzy Banach space (Y, N ′). Then there is
a unique quadratic–additive mapping F : X → Y such that
(2.2)

N ′(F (x)− f(x), t) ≥





supt′<t {N (x, 2−q(2− 2p)qt′q)} ,
if q > 1;

supt′<t {N (x, 4−q(4− 2p)q(2p − 2)qt′q)} ,
if 1

2 < q < 1;
supt′<t {N (x, 2−q(2p − 4)qt′q)}

if 0 < q < 1
2

for each x ∈ X and t > 0, where p := 1/q.
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Proof. It follows from (2.1) and (N4) that

N ′(f(0), t) = N ′(Df(0, 0), 2t) ≥ N (0, tq) = 1

for all t ∈ (0,∞). Thus, we have f(0) = 0 by (N2).
Now, we will prove the theorem in three cases, q > 1, 1

2 < q < 1, and
0 < q < 1

2 .
Case 1. Let q > 1 and let Jnf : X → Y be a mapping defined by

Jnf(x) =
1
2

[
4−n (f(2nx) + f(−2nx)) + 2−n (f(2nx)− f(−2nx))

]

for all x ∈ X. Notice that J0f(x) = f(x) and

Jjf(x)− Jj+1f(x)(2.3)

=
2j+1 − 1
2 · 4j+1

Df(−2jx,−2jx)− 2j+1 + 1
2 · 4j+1

Df(2jx, 2jx)

for all x ∈ X and j ≥ 0. Together with (N3), (N4) and (2.1), the last
equation implies that for any integers n,m with n > m ≥ 0 one has

N ′
(

Jmf(x)− Jn+mf(x),
n+m−1∑

j=m

(2p

2

)j
tp

)
(∗)

≥ N ′
( n+m−1∑

j=m

(
Jjf(x)− Jj+1f(x)

)
,
n+m−1∑

j=m

(2p

2

)j
tp

)

≥ min
n+m−1⋃

j=m

{
N ′

(
Jjf(x)− Jj+1f(x),

(2p

2

)j)
tp

}

≥ min
n+m−1⋃

j=m

{
min

{
N ′

(−(2j+1 + 1)Df(2jx, 2jx)
2 · 4j+1

,
(2j+1 + 1)2jptp

4j+1

)
,

N ′
((2j+1 − 1)Df(−2jx,−2jx)

2 · 4j+1
,
(2j+1 − 1)2jptp

4j+1

)}}

≥ min
n+m−1⋃

j=m

{
N(2jx, 2jt)

}
= N(x, t)

for all x ∈ X and t > 0. Let ε > 0 be given. Since limt→∞N(x, t) = 1,
there is a positive real number t0 > 0 such that

N(x, t0) ≥ 1− ε.

We observe that for some t̃ > t0 the series
∑∞

j=0

(
2p

2

)j
t̃p converges for

p = 1
q < 1. Thus, it guarantees that, for an arbitrary given c > 0, there
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exists a positive integer n0 > 0 such that

n+m−1∑

j=m

(
2p

2

)j

t̃p < c

for each m ≥ n0 and all n > 0. Therefore, by (N5) and (*), we have

N ′(Jmf(x)− Jn+mf(x), c)

≥ N ′
(
Jmf(x)− Jn+mf(x),

n+m−1∑

j=m

(2p

2

)j
t̃p

)

≥ N(x, t̃) ≥ N(x, t0) ≥ 1− ε.

for all x ∈ X. Hence {Jnf(x)} is a Cauchy sequence in the fuzzy Banach
space (Y,N ′), and so we can define a mapping F : X → Y by

F (x) := N ′ − lim
n→∞Jnf(x), x ∈ X.

Moreover, if we put m = 0 in the fuzzy inequality (*), we have

N ′(f(x)− Jnf(x), t) ≥ N


x,

tq(∑n−1
j=0

(
2p

2

)j)q


(2.4)

for all x ∈ X.
Next, we will show that F is the desired quadratic–additive mapping.

Using (N4), we have

N ′(DF (x, y), t)(2.5)

≥ min
{

N ′
(

(F − Jnf)(x + y),
t

10

)
, N ′

(
(F − Jnf)(x− y),

t

10

)
,

N ′
(

2(Jnf − F )(x),
t

10

)
, N ′

(
(Jnf − F )(y),

t

10

)
,

N ′
(

(Jnf − F )(−y),
t

10

)
, N ′

(
DJnf(x, y),

t

2

)}

for all x, y ∈ X and all n ∈ N. We observe that the first five terms on
the right hand side of (2.5) tend to 1 as n → ∞ by the definition of F
and (N2), and that the last term satisfies the following
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N ′
(

DJnf(x, y),
t

2

)

≥ min
{

N ′
(

Df(2nx, 2ny)
2 · 4n

,
t

8

)
, N ′

(
Df(−2nx,−2ny)

2 · 4n
,
t

8

)
,

N ′
(

Df(2nx, 2ny)
2 · 2n

,
t

8

)
, N ′

(
Df(−2nx,−2ny)

2 · 2n
,
t

8

)}

for all x, y ∈ X. Thus, using (N3) and (2.1), we obtain

N ′
(

Df(±2nx,±2ny))
2 · 4n

,
t

8

)

= N ′
(

Df(±2nx,±2ny),
4nt

4

)

≥ min
{

N

(
2nx,

(
4nt

8

)q)
, N

(
2ny,

(
4nt

8

)q)}

≥ min

{
N

(
x,

2(2q−1)n

23q
tq

)
, N

(
y,

2(2q−1)n

23q
tq

)}
,

and also we have similarly

N ′
(

Df(±2nx,±2ny))
2 · 2n

,
t

8

)

≥ min

{
N

(
x,

2(q−1)n

23q
tq

)
, N

(
y,

2(q−1)n

23q
tq

)}

for all x, y ∈ X and all n ∈ N. According to q > 1 together with (N5),
we can deduce that the last term of (2.5) also tends to 1 as n → ∞.
It follows from (2.5) that N ′(DF (x, y), t) = 1 for each x, y ∈ X and
t > 0. This equality means from the fuzzy normed property (N2) that
DF (x, y) = 0 for all x, y ∈ X, and so F is the desired quadratic–additive
mapping.

Next we approximate the difference between f and F in the fuzzy
sense. For an arbitrary fixed x ∈ X and t > 0, choose 0 < ε < 1 and
0 < t′ < t. Since F is the limit of {Jnf(x)}, there is a positive integer
n ∈ N such that

N ′ (F (x)− Jnf(x), t− t′
) ≥ 1− ε.
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By (2.4), we have

N ′(F (x)− f(x), t)
≥ min

{
N ′ (F (x)− Jnf(x), t− t′

)
, N ′ (Jnf(x)− f(x), t′

)}

≥ min



1− ε, N


x,

t′q(∑n−1
j=0

(
2p

2

)j
)q








≥ min
{
1− ε, N

(
x, 2−q(2− 2p)qt′q

)}
.

Because 0 < ε < 1 is arbitrary, we get the approximate inequality (2.2)
in this case.

Finally, to prove the uniqueness of F , let F ′ : X → Y be another
quadratic–additive mapping satisfying the approximation (2.2). Then
by (2.3), we get

(2.6)

{
F (x)− JnF (x) =

∑n−1
j=0 (JjF (x)− Jj+1F (x)) = 0;

F ′(x)− JnF ′(x) =
∑n−1

j=0 (JjF
′(x)− Jj+1F

′(x)) = 0

for all x ∈ X and all n ∈ N. Together with (N4) and (2.2), this implies
that

N ′(F (x)− F ′(x), t)
= N ′(JnF (x)− JnF ′(x), t)

≥ min
{

N ′
(

JnF (x)− Jnf(x),
t

2

)
, N ′

(
Jnf(x)− JnF ′(x),

t

2

)}

≥ min
{

N ′
(

(F − f)(2nx)
2 · 4n

,
t

8

)
, N ′

(
(f − F ′)(2nx)

2 · 4n
,

t

8

)
,

N ′
(

(F − f)(−2nx)
2 · 4n

,
t

8

)
, N ′

(
(f − F ′)(−2nx)

2 · 4n
,

t

8

)
,

N ′
(

(F − f)(2nx)
2 · 2n

,
t

8

)
, N ′

(
(f − F ′)(2nx)

2 · 2n
,

t

8

)
,

N ′
(

(F − f)(−2nx)
2 · 2n

,
t

8

)
, N ′

(
(f − F ′)(−2nx)

2 · 2n
,

t

8

) }

≥ sup
t′<t

N
(
x, 2(q−1)n−3q(2− 2p)qt′q

)

for all x ∈ X and all n ∈ N. Observe that, for q = 1
p > 1, the last

term of the above inequality tends to 1 as n →∞ by the fuzzy normed
property (N5). This implies that N ′(F (x)− F ′(x), t) = 1 and so we get
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F (x) = F ′(x) for all x ∈ X by the fuzzy normed property (N2), which
completes the uniqueness.

Case 2. Let 1
2 < q < 1 and let Jnf : X → Y be a mapping defined

by

Jnf(x) =
1
2

[
4−n

(
f(2nx) + f(−2nx)

)
+ 2n

(
f

( x

2n

)
− f

(
− x

2n

))]

for all x ∈ X. Then we have J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =
−1

2 · 4j+1
Df(2jx, 2jx)− 1

2 · 4j+1
Df(−2jx,−2jx)

+2j−1Df
( x

2j+1
,

x

2j+1

)
− 2j−1Df

( −x

2j+1
,
−x

2j+1

)

for all x ∈ X and all j ≥ 0. If n + m > m ≥ 0, then we have

N ′
(

Jmf(x)− Jn+mf(x),
n+m−1∑

j=m

(
1
2

(
2p

4

)j

+
2
2p

(
2
2p

)j
)

tp
)

≥ min
n+m−1⋃

j=m

{
min

{
N ′

(
−Df(2jx, 2jx)

2 · 4j+1
,

2jptp

4j+1

)
,

N ′
(
−Df(−2jx,−2jx)

2 · 4j+1
,

2jptp

4j+1

)
,

N ′
(

2j−1Df
( x

2j+1
,

x

2j+1

)
,

2jtp

2(j+1)p

)
,

N ′
(
−2j−1Df

(
− x

2j+1
, − x

2j+1

)
,

2jtp

2(j+1)p

)}}

≥ min
n+m−1⋃

j=m

{
N(2jx, 2jt), N

(
x

2j+1
,

t

2j+1

)}

= N(x, t)

for all x ∈ X and all t > 0. By the similar argument to (*) of the
previous case, we can define the limit F (x) := N ′ − limn→∞ Jnf(x) of
the Cauchy sequence {Jnf(x)} in the fuzzy Banach space Y . Moreover,
putting m = 0 in the above inequality, we have

N ′(f(x)− Jnf(x), t)(2.7)

≥ N


x,

tq(∑n−1
j=0

(
1
2

(
2p

4

)j + 2
2p

(
2
2p

)j
))q



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for each x ∈ X and t > 0. To prove that F is a quadratic–additive
function, it is enough to show that the last term of (2.5) tends to 1 as
n →∞ similarly as in Case 1. By (N3) and (2.1), we get

N ′
(

DJnf(x, y),
t

2

)

≥ min
{

N ′
(

Df(2nx, 2ny)
2 · 4n

,
t

8

)
, N ′

(
Df(−2nx,−2ny

2 · 4n
,
t

8

)
,

N ′
(

2n−1Df
( x

2n
,

y

2n

)
,
t

8

)
, N ′

(
2n−1Df

(−x

2n
,
−y

2n

)
,
t

8

)}

≥ min
{

N(x, 2(2q−1)n−3qtq), N(y, 2(2q−1)n−3qtq),

N(x, 2(1−q)n−3qtq), N(y, 2(1−q)n−3qtq)
}

for each x, y ∈ X and all t > 0. Observe that all the terms on the
right hand side of the above inequality tend to 1 as n → ∞ because of
1
2 < q < 1. Hence, by the similar argument after (2.5), we can verify
that DF (x, y) = 0 for all x, y ∈ X. Recalling that the inequality (2.2)
follows from (2.4) in Case 1, we get the approximation (2.2) from (2.7)
in this case by using the same argument.

Now to prove the uniqueness of F , let F ′ be another quadratic–
additive mapping satisfying the inequality (2.2). Then, together with
(N4), (2.2), and the inequality (2.6), we have

N ′(F (x)− F ′(x), t) = N ′(JnF (x)− JnF ′(x), t)

≥ min
{

N ′
(
JnF (x)− Jnf(x),

t

2

)
, N ′

(
Jnf(x)− JnF ′(x),

t

2

)}

≥ min
{

N ′
((F − f)(2nx)

2 · 4n
,
t

8

)
, N ′

((f − F ′)(2nx)
2 · 4n

,
t

8

)
,

N ′
((F − f)(−2nx)

2 · 4n
,
t

8

)
, N ′

((f − F ′)(−2nx)
2 · 4n

,
t

8

)
,

N ′
(
2n−1

(
(F − f)

( x

2n

))
,
t

8

)
, N ′

(
2n−1

(
(f − F ′)

( x

2n

))
,
t

8

)
,

N ′
(
2n−1

(
(F − f)

(−x

2n

))
,
t

8

)
, N ′

(
2n−1

(
(f − F ′)

(−x

2n

))
,
t

8

)}

≥ min
{

sup
t′<t

N
(
x, 2(2q−1)n−2q

(
4−1(4− 2p)(2p − 2)

)q
t′q

)
,

sup
t′<t

N
(
x, 2(1−q)n−2q

(
4−1(4− 2p)(2p − 2)

)q
t′q

)}
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for all x ∈ X and all n ∈ N. Since

lim
n→∞ 2(2q−1)n−2q = lim

n→∞ 2(1−q)n−2q = ∞

in this case, both terms on the right hand side of the above inequality
tend to 1 as n →∞ by (N5). This implies that N ′(F (x)− F ′(x), t) =
1 and so F (x) = F ′(x) for all x ∈ X by (N2), which completes the
uniqueness.

Case 3. Finally, we take 0 < q < 1
2 and define Jnf : X → Y by

Jnf(x) =
1
2

[
4n

(
f(2−nx) + f(−2−nx)

)
+ 2n

(
f

( x

2n

)
− f

(
− x

2n

))]

for all x ∈ X. Then we have J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) = (2 · 4j−1 + 2j−1)Df
( x

2j+1
,

x

2j+1

)

+(2 · 4j−1 − 2j−1)Df

( −x

2j+1
,
−x

2j+1

)
,

which implies that if n + m > m ≥ 0, then

N ′
(
Jmf(x)− Jn+mf(x), 2

n+m−1∑

j=m

( 4
2p

)j tp

2p

)

≥ min
n+m−1⋃

j=m

{
min

{
N ′

(
(2 · 4j−1 + 2j−1)Df

( x

2j+1
,

x

2j+1

)
,
(4j + 2j)tp

2(j+1)p

)
,

N ′
(
(2 · 4j−1 − 2j−1)Df

(
− x

2j+1
,− x

2j+1

)
,
(4j − 2j)tp

2(j+1)p

)}}

≥ min
n+m−1⋃

j=m

{
N

( x

2j+1
,

t

2j+1

)}

= N(x, t)

for all x ∈ X and all t > 0. Similar to the previous cases, it leads us to
define a mapping F : X → Y given by F (x) := N ′ − limn→∞ Jnf(x).
Putting m = 0 in the last inequality, we have

N ′(f(x)− Jnf(x), t) ≥ N


x,

tq(
2
2p

∑n−1
j=0

(
4
2p

)j
)q


(2.8)
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for all x ∈ X and all t > 0. We notice that

N ′
(
DJnf(x, y),

t

2

)

≥ min
{

N ′
(4n

2
Df

( x

2n
,

y

2n

)
,
t

8

)
, N ′

(4n

2
Df

(−x

2n
,
−y

2n

)
,
t

8

)
,

N ′
(
2n−1Df

( x

2n
,

y

2n

)
,
t

8

)
, N ′

(
2n−1Df

(−x

2n
,
−y

2n

)
,
t

8

)}

≥ min
{

N
(
x, 2(1−2q)n−3qtq

)
, N

(
y, 2(1−2q)n−3qtq

)
,

N
(
x, 2(1−q)n−3qtq

)
, N

(
y, 2(1−q)n−3qtq

)}

for each x, y ∈ X and all t > 0. Since 0 < q < 1
2 , both terms on the

right hand side tend to 1 as n → ∞, which implies that the last term
of (2.5) applied to this case tends to 1 as n → ∞. Therefore, we can
say that DF ≡ 0. Moreover, using the similar argument after (2.5) in
Case 1, we get the inequality (2.2) from (2.8) in this case. To prove the
uniqueness of F , let F ′ : X → Y be another quadratic–additive function
satisfying the inequality (2.2). Then, we get from use of (2.6)

N ′(F (x)− F ′(x), t)

≥ min
{

N ′
(
JnF (x)− Jnf(x),

t

2

)
, N ′

(
Jnf(x)− JnF ′(x),

t

2

)}

≥ min
{

N ′
(4n

2

(
(F − f)

( x

2n

))
,
t

8

)
, N ′

(4n

2

(
(f − F ′)

( x

2n

))
,
t

8

)
,

N ′
(4n

2

(
(F − f)

(−x

2n

))
,
t

8

)
, N ′

(4n

2

(
(f − F ′)

(−x

2n

))
,
t

8

)
,

N ′
(
2n−1

(
(F − f)

( x

2n

))
,
t

8

)
, N ′

(
2n−1

(
(f − F ′)

( x

2n

))
,
t

8
),

N ′
(
2n−1

(
(F − f)

(−x

2n

))
,
t

8

)
, N ′

(
2n−1

(
(f − F ′)

(−x

2n

))
,
t

8

)}

≥ sup
t′<t

N
(
x, 2(1−2q)n−3q(2p − 4)qt′q

)

for all x ∈ X and all n ∈ N. Observe that, for 0 < q < 1
2 , the last term

tends to 1 as n →∞ by the fuzzy normed property (N5). This implies
that N ′(F (x) − F ′(x), t) = 1 and F (x) = F ′(x) for all x ∈ X by the
fuzzy normed property (N2), completing the uniqueness.
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Remark 2.2. Consider a mapping f : X → Y satisfying (2.1) for all
x, y ∈ X and a real number q < 0. Take any t > 0. If we choose a real
number s with 0 < 2s < t, then we have

N ′(Df(x, y), t) ≥ N ′(Df(x, y), 2s) ≥ min{N(x, sq), N(y, sq)}
for all x, y ∈ X. Since q < 0, we have lims→0+ sq = ∞. This implies
that

lim
s→0+

N(x, sq) = lim
s→0+

N(y, sq) = 1

and so

N ′(Df(x, y), t) = 1

for all x, y ∈ X and all t > 0. By (N2), it allows us to get Df(x, y) = 0
for all x, y ∈ X. In other words, f is itself a quadratic additive mapping
if f is a fuzzy q-almost quadratic–additive mapping for the case q < 0.

Corollary 2.3. Let f be an even mapping satisfying all of the
conditions of Theorem 2.1. Then there is a unique quadratic mapping
F : X → Y such that

N ′(F (x)− f(x), t) ≥ sup
t′<t

N
(
x,

(
2−1|4− 2p|t′)q)(2.9)

for all x ∈ X and t > 0, where p := 1/q.

Proof. Let Jnf be defined as in Theorem 2.1. Since f is an even
mapping, we obtain

Jnf(x) =
{

f(2nx)+f(−2nx)
2·4n , if 0 < q < 1

2 ;
1
2 [4n (f(2−nx) + f(−2−nx))] , if q > 1

2

for all x ∈ X. Notice that J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =

{
−Df(2jx,2jx)

4j+1 , if 0 < q < 1
2 ;

4jDf
(

x
2j+1 , x

2j+1

)
, if q > 1

2

for all x ∈ X and j ∈ N ∪ {0}. From these, using the similar method
in Theorem 2.1, we obtain the quadratic–additive mapping F satisfying
the fuzzy inequality (2.9). Notice that F is also even, F (x) := N ′ −
limn→∞ Jnf(x) for all x ∈ X, and DF (x, y) = 0 for all x, y ∈ X. Hence,
we get

F (x + y) + F (x− y)− 2F (x)− 2F (y) = DF (x, y)−DF (0, y) = 0

for all x, y ∈ X. This means that F is in fact a quadratic mapping.
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Corollary 2.4. Let f be an odd mapping satisfying all of the
conditions of Theorem 2.1. Then there is a unique additive mapping
F : X → Y such that

N ′(F (x)− f(x), t) ≥ sup
t′<t

N
(
x,

(
2−1|2− 2p|t′)q)(2.10)

for all x ∈ X and t > 0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.1. Since f is an odd
mapping, we obtain

Jnf(x) =
{

f(2nx)−f(−2nx)
2n+1 , if 0 < q < 1;

2n−1 [f(2−nx)− f(−2−nx)] , if q > 1

for all x ∈ X. Notice that J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =





1
2j+2 [Df(−2jx,−2jx)−Df(2jx, 2jx)],

if 0 < q < 1;
2j−1

[
Df

(
x

2j+1 , x
2j+1

)−Df
( −x

2j+1 , −x
2j+1

)]
,

if q > 1

for all x ∈ X and j ∈ N ∪ {0}. From these, using the similar method
in Theorem 2.1, we obtain the quadratic–additive mapping F satisfying
(2.10). Notice that F is also odd, F (x) := N ′ − limn→∞ Jnf(x) for all
x ∈ X, and DF (x, y) = 0 for all x, y ∈ X. Hence, we get

F (x + y)− F (x)− F (y) =
1
2
DF (x, y) = 0

for all x, y ∈ X. This means that F is in fact an additive mapping.

We can use Theorem 2.1 to get a classical result in the framework of
normed spaces as follows. Let (X, ‖ · ‖) be a normed linear space. Then
we can define a fuzzy norm NX on X by following

NX(x, t) =
{

0, t ≤ ‖x‖;
1, t > ‖x‖

where x ∈ X and all t ∈ R, see [11] for details. Suppose that f : X → Y
is a mapping into a Banach space (Y, ||| · |||) such that

|||Df(x, y)||| ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X, where p > 0 and p 6= 1, 2. Let NY be a fuzzy norm on
Y defined by above as usual. Then we get

NY (Df(x, y), s + t) =
{

0, s + t ≤ |||Df(x, y)|||;
1, s + t > |||Df(x, y)|||
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for all x, y ∈ X and all s, t ∈ R. Consider the case NY (Df(x, y), s+ t) =
0. This implies that

‖x‖p + ‖y‖p ≥ ‖|Df(x, y)‖| ≥ s + t

and so either ‖x‖p ≥ s or ‖y‖p ≥ t in this case. Hence, for q = 1
p , we

have

min{NX(x, sq), NX(y, tq)} = 0

for all x, y ∈ X and s, t > 0. Therefore, in any case, the inequality

NY (Df(x, y), s + t) ≥ min{NX(x, sq), NX(y, tq)}
holds. It means that f is a fuzzy q-almost quadratic–additive mapping,
and by Theorem 2.1, we get the following stability result.

Corollary 2.5. Let (X, ‖ · ‖) be a normed linear space and let
(Y, ||| · |||) be a Banach space. If a mapping f satisfies the functional
inequality

|||Df(x, y)||| ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X, where p > 0 and p 6= 1, 2, then there is a unique
quadratic–additive mapping F : X → Y such that

|||F (x)− f(x)||| ≤





2||x||p
2−2p , if 0 < p < 1;

4||x||p
(2p−2)(4−2p) , if 1 < p < 2;
2||x||p
2p−4 , if 2 < p

for all x ∈ X.
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