ON THE HYERS-ULAM STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY

Sang-baek Lee*, Jae-hyeong Bae**, and Won-gil Park***

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, we prove the generalized Hyers-Ulam } \\
& \text { stability of the additive functional inequality } \\
& \qquad\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\| \\
& \text { in Banach spaces. }
\end{aligned}
$$

1. Introduction and preliminaries

In 1940, Ulam [6] suggested the stability problem of functional equations concerning the stability of group homomorphisms as follows: Let (\mathcal{G}, \circ) be a group and let (\mathcal{H}, \star, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exist a $\delta=\delta(\varepsilon)>0$ such that if a mapping $f: \mathcal{G} \rightarrow \mathcal{H}$ satisfies the inequality

$$
d(f(x \circ y), f(x) \star f(y))<\delta
$$

for all $x, y \in \mathcal{G}$, then a homomorphism $F: \mathcal{G} \rightarrow \mathcal{H}$ exits with

$$
d(f(x), F(x))<\varepsilon
$$

for all $x \in \mathcal{G}$?
In 1941, Hyers [2] gave a first (partial) affirmative answer to the question of Ulam for Banach spaces as follows: If $\delta>0$ and if $f: \mathcal{E} \rightarrow \mathcal{F}$ is a mapping between Banach spaces \mathcal{E} and \mathcal{F} satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

Received March 27, 2013; Accepted October 11, 2013.
2010 Mathematics Subject Classification: Primary 39B82; Secondary 46Bxx, 47Jxx.

Key words and phrases: additive functional inequality, Banach space.
Correspondence should be addressed to Won-gil Park, wgpark@mokwon.ac.kr.
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013013682).
for all $x, y \in \mathcal{E}$, then there is a unique additive mapping $A: \mathcal{E} \rightarrow \mathcal{F}$ such that

$$
\|f(x)-A(x)\| \leq \delta
$$

for all $x, y \in \mathcal{E}$.
We will recall a fundamental result in fixed point theory for explicit later use.

ThEOREM 1.1. (The alternative of fixed point) $[1,5]$
Suppose we are given a complete generalized metric space (\mathcal{X}, d) and a strictly contractive mapping $\Lambda: \mathcal{X} \rightarrow \mathcal{X}$, with the Lipschitz constant L. Then, for each given element $x \in \mathcal{X}$, either

$$
d\left(\Lambda^{n} x, \Lambda^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(a) $d\left(\Lambda^{n} x, \Lambda^{n+1}\right)<\infty$ for all $n \geq n_{0}$;
(b) The sequence $\left(\Lambda^{n} x\right)$ is convergent to a fixed point y^{*} of Λ;
(c) y^{*} is the unique fixed point of Λ in the set $Y=\left\{y \in X \mid d\left(\Lambda^{n_{0}}, y\right)<\infty\right\} ;$
(d) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, \Lambda y)$ for all $y \in Y$.

2. Hyers-Ulam stability in Banach spaces

Throughout this paper, let \mathcal{X} be a normed linear space and \mathcal{Y} a Banach space. In 2007, Park, Cho and Han [4] proved the Hyers-Ulam stability of the additive functional inequality

$$
\|f(x)+f(y)+f(z)\| \leq\|f(x+y+z)\|
$$

in Banach spaces. In 2011, Lee, Park and Shin [3] prove the Hyers-Ulam stability of the additive functional inequality

$$
\|f(2 x)+f(2 y)+2 f(z)\| \leq\|2 f(x+y+z)\|
$$

in Banach spaces.
In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality

$$
\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|
$$

in Banach spaces.

Lemma 2.1. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping. Then it is additive if and only if it satisfies

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\| \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$.
Proof. If f is additive, then clearly

$$
\|f(x-y)+f(y-z)+f(z)\|=\|f(x)\|
$$

for all $x, y, z \in \mathcal{X}$.
Assume that f satisfies (2.1). Letting $x=y=z=0$ in (2.1), we gain $\|3 f(0)\| \leq\|f(0)\|$ and so $f(0)=0$. Putting $x=z=0$ in (2.1), we get

$$
\|f(-y)+f(y)\| \leq\|f(0)\|=0
$$

and so $f(-y)=-f(y)$ for all $y \in \mathcal{X}$. Letting $x=0$ and replacing z by $-z$ in (2.1), we have

$$
\|f(y+z)+f(-y)+f(-z)\| \leq\|f(0)\|=0
$$

for all $y, z \in \mathcal{X}$. Thus we obtain

$$
f(y+z)=f(y)+f(z)
$$

for all $y, z \in \mathcal{X}$.
Theorem 2.2. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping with $f(0)=0$. If there is a function $\varphi: X^{3} \rightarrow[0, \infty)$ satisfying

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|+\varphi(x, y, z) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\varphi}(x, y, z):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left((-2)^{j} x,(-2)^{j} y,(-2)^{j} z\right)<\infty \tag{2.3}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique additive mapping $A: \mathcal{X} \rightarrow$ \mathcal{Y} such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{2} \widetilde{\varphi}(0,-x, x) \tag{2.4}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. Replacing x, y, z by $0,-(-2)^{n} x,(-2)^{n} x$, respectively, and dividing by 2^{n+1} in (2.2), since $f(0)=0$, we get

$$
\left\|\frac{f\left((-2)^{n+1} x\right)}{(-2)^{n+1}}-\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}\right\| \leq \frac{1}{2^{n+1}} \varphi\left(0,-(-2)^{n} x,(-2)^{n} x\right)
$$

for all $x \in \mathcal{X}$ and all nonnegative integers n. From the above inequality, we have

$$
\begin{array}{ll}
\left\|\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}-\frac{f\left((-2)^{m} x\right)}{(-2)^{m}}\right\| & \leq \sum_{j=m}^{n-1}\left\|\frac{f\left((-2)^{j+1} x\right)}{(-2)^{j+1}}-\frac{f\left((-2)^{j} x\right)}{(-2)^{j}}\right\| \\
& \leq \sum_{j=m}^{n-1} \frac{1}{2^{j+1}} \varphi\left(0,-(-2)^{j} x,(-2)^{j} x\right) \tag{2.5}
\end{array}
$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, n with $m<n$. By the condition (2.3), the sequence $\left\{\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}\right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{\frac{f\left((-2)^{n} x\right)}{(-2)^{n}}\right\}$ converges for all $x \in \mathcal{X}$. So one can define a mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{f\left((-2)^{n} x\right)}{(-2)^{n}}
$$

for all $x \in \mathcal{X}$. Taking $m=0$ and letting n tend to ∞ in (2.5), we have the inequality (2.4).

Replacing x, y, z by $(-2)^{n} x,(-2)^{n} y,(-2)^{n} z$, respectively, and dividing by 2^{n} in (2.2), we obtain

$$
\begin{aligned}
& \left\|\frac{f\left((-2)^{n}(x-y)\right)}{(-2)^{n}}+\frac{f\left((-2)^{n}(y-z)\right)}{(-2)^{n}}+\frac{f\left((-2)^{n}(z)\right)}{(-2)^{n}}\right\| \\
& \leq\left\|\frac{2 f\left((-2)^{n}(x)\right)}{(-2)^{n}}\right\|+\frac{1}{2^{n}} \varphi\left((-2)^{n} x,(-2)^{n} y,(-2)^{n} z\right)
\end{aligned}
$$

for all $x, y, z \in \mathcal{X}$ and all nonnegative integers n. Since (2.3) gives that

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left((-2)^{n} x,(-2)^{n} y,(-2)^{n} z\right)=0
$$

for all $x, y, z \in \mathcal{X}$, letting n tend to ∞ in the above inequality, we see that A satisfies the inequality (2.1) and so it is additive by Lemma 2.1.

Let $A^{\prime}: \mathcal{X} \rightarrow \mathcal{Y}$ be another additive mapping satisfying (2.4). Since both A and A^{\prime} are additive, we have

$$
\begin{aligned}
& \left\|A(x)-A^{\prime}(x)\right\| \\
& =\frac{1}{2^{n}}\left\|A\left((-2)^{n} x\right)-A^{\prime}\left((-2)^{n} x\right)\right\| \\
& \leq \frac{1}{2^{n}}\left(\left\|A\left((-2)^{n} x\right)-f\left((-2)^{n} x\right)\right\|+\left\|f\left((-2)^{n} x\right)-A^{\prime}\left((-2)^{n} x\right)\right\|\right) \\
& \leq \frac{1}{2^{n}} \widetilde{\varphi}\left(0,-(-2)^{n} x,(-2)^{n} x\right) \\
& =\sum_{j=n}^{\infty} \frac{1}{2^{j}} \varphi\left(0,-(-2)^{j} x,(-2)^{j} x\right)
\end{aligned}
$$

which goes to zero as $n \rightarrow \infty$ for all $x \in \mathcal{X}$ by (2.3). Therefore, A is a unique additive mapping satisfying (2.4), as desired.

Corollary 2.3. Let $\theta \in[0, \infty)$ and $p \in[0,1)$ and let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be an odd mapping such that
(2.6) $\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$
for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p} \tag{2.7}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. In Theorem 2.2, take $\varphi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in \mathcal{X}$. Then we have the desired result.

Theorem 2.4. Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping with $f(0)=0$. If there is a function $\varphi: X^{3} \rightarrow[0, \infty)$ satisfying (2.2) and

$$
\begin{equation*}
\widetilde{\varphi}(x, y, z):=\sum_{j=1}^{\infty} 2^{j} \varphi\left(\frac{x}{(-2)^{j}}, \frac{y}{(-2)^{j}}, \frac{z}{(-2)^{j}}\right)<\infty \tag{2.8}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique additive mapping $A: \mathcal{X} \rightarrow$ \mathcal{Y} such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{2} \widetilde{\varphi}(0,-x, x) \tag{2.9}
\end{equation*}
$$

for all $x \in \mathcal{X}$.

Proof. Replacing x, y, z by $0, \frac{-x}{(-2)^{n}}, \frac{x}{(-2)^{n}}$, respectively, and multiplying by 2^{n-1} in (2.2), since $f(0)=0$, we have

$$
\left\|(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)-(-2)^{n-1} f\left(\frac{x}{(-2)^{n-1}}\right)\right\| \leq 2^{n-1} \varphi\left(0, \frac{-x}{(-2)^{n}}, \frac{x}{(-2)^{n}}\right)
$$

for all $x \in \mathcal{X}$ and all $n \in \mathbb{N}$. From the above inequality, we get

$$
\begin{align*}
& \left\|(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)-(-2)^{m} f\left(\frac{x}{(-2)^{m}}\right)\right\| \tag{2.10}\\
& \leq \sum_{j=m+1}^{n}\left\|(-2)^{j} f\left(\frac{x}{(-2)^{j}}\right)-(-2)^{j-1} f\left(\frac{x}{(-2)^{j-1}}\right)\right\| \\
& \leq \sum_{j=m+1}^{n} 2^{j-1} \varphi\left(0, \frac{-x}{(-2)^{j}}, \frac{x}{(-2)^{j}}\right)
\end{align*}
$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, n with $m<n$. From (2.8), the sequence $\left\{(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)\right\}$ converges for all $x \in \mathcal{X}$. So one can define a mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
A(x):=\lim _{n \rightarrow \infty}(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)
$$

for all $x \in \mathcal{X}$. To prove that A satisfies (2.9), putting $m=0$ and letting $n \rightarrow \infty$ in (2.10), we have

$$
\|f(x)-A(x)\| \leq \sum_{j=1}^{\infty} 2^{j-1} \varphi\left(0, \frac{-x}{(-2)^{j}}, \frac{x}{(-2)^{j}}\right)=\frac{1}{2} \widetilde{\varphi}(0,-x, x)
$$

for all $x \in \mathcal{X}$.
Replacing x, y, z by $\frac{x}{(-2)^{n}}, \frac{y}{(-2)^{n}}, \frac{z}{(-2)^{n}}$, respectively, and multiplying by 2^{n} in (2.2), we obtain

$$
\begin{aligned}
& \left\|(-2)^{n} f\left(\frac{x-y}{(-2)^{n}}\right)+(-2)^{n} f\left(\frac{y-z}{(-2)^{n}}\right)+(-2)^{n} f\left(\frac{z}{(-2)^{n}}\right)\right\| \\
& \leq\left\|(-2)^{n} f\left(\frac{x}{(-2)^{n}}\right)\right\|+2^{n} \varphi\left(\frac{x}{(-2)^{n}}, \frac{y}{(-2)^{n}}, \frac{z}{(-2)^{n}}\right)
\end{aligned}
$$

for all $x, y, z \in \mathcal{X}$ and all nonnegative integers n. Since (2.8) gives that

$$
\lim _{n \rightarrow \infty} 2^{n} \varphi\left(\frac{x}{(-2)^{n}}, \frac{y}{(-2)^{n}}, \frac{z}{(-2)^{n}}\right)=0
$$

for all $x, y, z \in \mathcal{X}$, if we let $n \rightarrow \infty$ in the above inequality, then we have

$$
\|A(x-y)+A(y-z)+A(z)\| \leq\|A(x)\|
$$

for all $x, y, z \in \mathcal{X}$. By Lemma 2.1, the mapping A is additive. The rest of the proof is similar to the corresponding part of the proof of Theorem 2.2.

Corollary 2.5. Let $p>1$ and θ be non-negative real numbers and let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be an odd mapping such that
(2.11) $\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$
for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2 \theta}{2^{p}-2}\|x\|^{p} \tag{2.12}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. In Theorem 2.4, take $\varphi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in \mathcal{X}$. Then, we have the desired result.

3. Hyers-Ulam stability using fixed point methods

Now, using the fixed point method, we investigate the Hyers-Ulam stability of the functional inequality (2.1) in Banach spaces.

Theorem 3.1. Suppose that an odd mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies the inequality

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|+\phi(x, y, z) \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$, where $\phi: \mathcal{X}^{3} \rightarrow[0, \infty)$ is a function. If there exists $L<1$ such that

$$
\begin{equation*}
\phi(x, y, z) \leq \frac{1}{2} L \phi(2 x, 2 y, 2 z) \tag{3.2}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique Cauchy additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ satisfying

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{L}{2-2 L} \phi(0,-x, x) \tag{3.3}
\end{equation*}
$$

for all $x \in \mathcal{X}$.

Proof. Consider a set $S:=\{g \mid g: \mathcal{X} \rightarrow \mathcal{Y}\}$ and introduce a generalized metric d on S as follows:

$$
d(g, h)=d_{\phi}(g, h):=\inf S_{\phi}(g, h),
$$

where

$$
S_{\phi}(g, h):=\{C \in(0, \infty):\|g(x)-h(x)\| \leq C \phi(0,-x, x) \text { for all } x \in \mathcal{X}\}
$$

for all $g, h \in S$. Now we show that (S, d) is complete. Let $\left\{h_{n}\right\}$ be a Cauchy sequence in (S, d). Then, for any $\varepsilon>0$ there exists an integer $N_{\varepsilon}>0$ such that $d\left(h_{m}, h_{n}\right)<\varepsilon$ for all $m, n \geq N_{\varepsilon}$. Since $d\left(h_{m}, h_{n}\right)=$ $\inf S_{\phi}\left(h_{m}, h_{n}\right)<\varepsilon$ for all $m, n \geq N_{\varepsilon}$, there exists $C \in(0, \varepsilon)$ such that

$$
\begin{equation*}
\left\|h_{m}(x)-h_{n}(x)\right\| \leq C \phi(0,-x, x) \leq \varepsilon \phi(0,-x, x) \tag{3.4}
\end{equation*}
$$

for all $m, n \geq N_{\varepsilon}$ and all $x \in \mathcal{X}$. So $\left\{h_{n}(x)\right\}$ is a Cauchy sequence in \mathcal{Y} for each $x \in \mathcal{X}$. Since \mathcal{Y} is complete, $\left\{h_{n}(x)\right\}$ converges for each $x \in \mathcal{X}$. Thus a mapping $h: \mathcal{X} \rightarrow \mathcal{Y}$ can be defined by

$$
\begin{equation*}
h(x):=\lim _{n \rightarrow \infty} h_{n}(x) \tag{3.5}
\end{equation*}
$$

for all $x \in \mathcal{X}$. Letting $n \rightarrow \infty$ in (3.4), we have

$$
\begin{aligned}
m \geq N_{\varepsilon} & \Rightarrow\left\|h_{m}(x)-h(x)\right\| \leq \varepsilon \phi(0,-x, x) \\
& \Rightarrow \varepsilon \in S_{\phi}\left(h_{m}, h\right) \\
& \Rightarrow d\left(h_{m}, h\right)=\inf S_{\phi}\left(h_{m}, h\right) \leq \varepsilon
\end{aligned}
$$

for all $x \in \mathcal{X}$. This means that the Cauchy sequence $\left\{h_{n}\right\}$ converges to h in (S, d). Hence (S, d) is complete.

Define a mapping $\Lambda: S \rightarrow S$ by

$$
\begin{equation*}
\Lambda h(x):=2 h\left(\frac{x}{2}\right) \tag{3.6}
\end{equation*}
$$

for all $x \in \mathcal{X}$. We claim that Λ is strictly contractive on S. For any given $g, h \in S$, let $C_{g h} \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq C_{g h}$. Then

$$
\begin{aligned}
& d(g, h) \leq C_{g h} \\
& \Rightarrow\|g(x)-h(x)\| \leq C_{g h} \phi(0,-x, x) \text { for all } x \in \mathcal{X} \\
& \Rightarrow\left\|2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)\right\| \leq 2 C_{g h} \phi\left(0,-\frac{x}{2}, \frac{x}{2}\right) \text { for all } x \in \mathcal{X} \\
& \Rightarrow\left\|2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)\right\| \leq L C_{g h} \phi(0,-x, x) \text { for all } x \in \mathcal{X},
\end{aligned}
$$

that is, $d(\Lambda g, \Lambda h) \leq L C_{g h}$. Hence we see that $d(\Lambda g, \Lambda h) \leq L d(g, h)$ for any $g, h \in S$. Therefore Λ is strictly contractive mapping on S with the

Lipschitz constant $L \in(0,1)$. Putting $x=0, y=-x$ and $z=x$ in (3.1), we have

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq \phi(0,-x, x) \tag{3.7}
\end{equation*}
$$

for all $x \in \mathcal{X}$. It follows from (3.7) that

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \phi\left(0,-\frac{x}{2}, \frac{x}{2}\right) \leq \frac{L}{2} \phi(0,-x, x) \tag{3.8}
\end{equation*}
$$

for all $x \in \mathcal{X}$. Thus $d(f, \Lambda f) \leq \frac{L}{2}$. Therefore, it follows from Theorem 1.1 that the sequence $\left\{\Lambda^{n} f\right\}$ converges to a fixed point A of Λ, i.e.,

$$
A: \mathcal{X} \rightarrow \mathcal{Y}, \quad A(x)=\lim _{n \rightarrow \infty}(\Lambda f)(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

and $A(2 x)=2 A(x)$ for all $x \in \mathcal{X}$. Also A is the unique fixed point of Λ in the set $S^{*}=\{g \in S \mid d(f, g)<\infty\}$ and

$$
d(A, f) \leq \frac{1}{1-L} d(\Lambda f, f) \leq \frac{L}{2-2 L}
$$

i.e., the inequality (3.3) holds for all $x \in \mathcal{X}$. It follows from the definition of A and (3.1) that

$$
\|A(x-y)+A(y-z)+A(z)\| \leq\|A(x)\|
$$

for all $x, y, z \in \mathcal{X}$. By Lemma 2.1, the mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ is a Cauchy additive mapping. Therefore, there exists a unique Cauchy additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ satisfying (3.3).

Corollary 3.2. Let $p>1$ and θ be non-negative real numbers and let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be an odd mapping such that

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{3.9}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2^{p}+1}{2^{p}-2} \theta\|x\|^{p} \tag{3.10}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. In Theorem 3.1, take $\phi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in \mathcal{X}$. Then, we can choose $L=2^{1-p}$ and we have the desired result.

Theorem 3.3. Suppose that an odd mapping $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies the inequality

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|+\phi(x, y, z) \tag{3.11}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$, where $\phi: \mathcal{X}^{3} \rightarrow[0, \infty)$ is a function. If there exists $L<1$ such that

$$
\begin{equation*}
\phi(x, y, z) \leq 2 L \phi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right) \tag{3.12}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique Cauchy additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ satisfying

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{2-2 L} \phi(0,-x, x) \tag{3.13}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. Consider the complete generalized metric space (S, d) given in the proof of Theorem 3.1. Now we consider the linear mapping $\Lambda: S \rightarrow$ S given by

$$
\Lambda h(x)=\frac{1}{2} h(2 x)
$$

for all $x \in \mathcal{X}$. For any given $g, h \in S$, let $C_{g h} \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq C_{g h}$. Hence we obtain

$$
d(\Lambda g, \Lambda h) \leq L d(g, h)
$$

for all $g, h \in S$. It follows from (3.7) that $d(f, \Lambda f) \leq \frac{1}{2}$. The rest of the proof is similar to the corresponding part of the proof of Theorem 3.1.

Corollary 3.4. Let $\theta \in[0, \infty)$ and $p \in[0,1)$ and let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be an odd mapping such that

$$
\begin{equation*}
\|f(x-y)+f(y-z)+f(z)\| \leq\|f(x)\|+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{3.14}
\end{equation*}
$$

for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1+2^{p}}{2-2^{p}} \theta\|x\|^{p} \tag{3.15}
\end{equation*}
$$

for all $x \in \mathcal{X}$.
Proof. In Theorem 3.3, take $\phi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in \mathcal{X}$. Then we can choose $L=2^{p-1}$ and we have the desired result.

References

[1] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
[3] J. Lee, C. Park, and D. Shin, Stability of an additive functional inequality in proper $C Q^{*}$-algebras, Bull. Korean Math. Soc. 48 (2011), 853-871.
[4] C. Park, Y. S. Cho, and M. H. Han, Functional inequalities associated with Jordan -von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
[5] I. A. Rus, Principles and Applications of Fixed Point Theory, (in Romanian), Editura Dacia, Cluj-Napoca, 1979.
[6] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: mcsquarelsb@hanmail.net

**

Humanitas College
Kyung Hee University
Yongin 446-701, Republic of Korea
E-mail: jhbae@khu.ac.kr

Department of Mathematics Education
Mokwon University
Daejeon 302-729, Republic of Korea
E-mail: wgpark@mokwon.ac.kr

