JOURNAL OF THE

CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 26, No. 4, November 2013
http://dx.doi.org/10.14403/jcms.2013.26.4.671

ON THE HYERS-ULAM STABILITY OF AN ADDITIVE
FUNCTIONAL INEQUALITY

SANG-BAEK LEE*, JAE-HYEONG BAE** AND WON-GIL PARK***

ABSTRACT. In this paper, we prove the generalized Hyers-Ulam
stability of the additive functional inequality
1f(z—y)+ fly—2)+ fRI <[/

in Banach spaces.

1. Introduction and preliminaries

In 1940, Ulam [6] suggested the stability problem of functional equa-
tions concerning the stability of group homomorphisms as follows: Let
(G,0) be a group and let (H,*,d) be a metric group with the metric
d(-,-). Given ¢ > 0, does there exist a 6 = §(¢) > 0 such that if a
mapping f : G — H satisfies the inequality

d(f(zoy), flz)* fly)) <o
for all x,y € G, then a homomorphism F : G — H exits with

d(f(z),F(z)) <e
forallx € G?
In 1941, Hyers [2] gave a first (partial) affirmative answer to the
question of Ulam for Banach spaces as follows: Ifd >0 and if f : € — F
is a mapping between Banach spaces & and F satisfying

1 f(z+y) = fx) = fy)]| <o
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for all x,y € £, then there is a unique additive mapping A : € — F such
that

[/ (z) — A(2)[| <6
forallx,y € €.

We will recall a fundamental result in fixed point theory for explicit
later use.

THEOREM 1.1. (The alternative of fixed point) [1, 5]
Suppose we are given a complete generalized metric space (X, d) and a
strictly contractive mapping A : X — X, with the Lipschitz constant L.
Then, for each given element x € X, either

d(A"z, A"2) = o0
for all nonnegative integers n or there exists a positive integer ng such
that

(a) d(A"x, A"1) < oo for all n > ny;
(b) The sequence (A"x) is convergent to a fixed point y* of A;
(¢) y* is the unique fixed point of A in the set
Y ={y e X[d(A",y) < oo};
(d) d(y,y*) < 72z d(y, Ay) for all y €Y.

2. Hyers-Ulam stability in Banach spaces

Throughout this paper, let X be a normed linear space and ) a
Banach space. In 2007, Park, Cho and Han [4] proved the Hyers-Ulam
stability of the additive functional inequality

[£@)+ F @)+ f@| < [[f@+y+2)

in Banach spaces. In 2011, Lee, Park and Shin [3] prove the Hyers-Ulam
stability of the additive functional inequality

| f2z) + f2y) + 2f (2)|| < ||2f (z +y + 2) ||

in Banach spaces.
In this paper, we prove the generalized Hyers-Ulam stability of the
additive functional inequality

1f(x =)+ Fly=2)+ F) < ()]

in Banach spaces.
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LEMMA 2.1. Let f : X — Y be a mapping. Then it is additive if and
only if it satisfies

(2.1) 1f@—=y)+ fly—2)+ fEI<[f@)]
for all x,y,z € X.

Proof. If f is additive, then clearly

If@=9) + fly = 2) + fGE)] = [ /@)
for all z,y,z € X.
Assume that f satisfies (2.1). Letting z =y = z = 0 in (2.1), we gain
13£(0)|| < || £(0)|| and so £(0) = 0. Putting = z = 0 in (2.1), we get
1f(=w) + fW) < [I£O)]| =0

and so f(—y) = —f(y) for all y € X. Letting x = 0 and replacing z by
—zin (2.1), we have

1F(y+2)+ f(= —2)|| < [l70)]| =
for all y,z € X. Thus we obtain
fly+2)=fly)+ f(z)
for all y,z € X. O

THEOREM 2.2. Let f : X — Y be a mapping with f(0) = 0. If there
is a function ¢ : X3 — [0, 00) satisfying

(2.2) 1f(z=y)+ fly—2) + FEI < f @) + o (2,9, 2)

and

(2.3) o(z,y, 2 Z %g@ z, (=2)y, (—2)jz) < 00

.

J=0

for all x,y,z € X, then there exists a unique additive mapping A : X —
Y such that

(2.4) [ f(z) — A()]| <
forallz € X.

o(0, —x, )

N

Proof. Replacing z,y, z by 0, —(—2)"z, (—2)"x, respectively, and di-
viding by 2"*1 in (2.2), since f(0) = 0, we get
H F((=2a)  f((-2a)|_ 1

oy T (o) < Qnﬂgo(o,—(_g)n;g, (—2)"z)
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for all x € X and all nonnegative integers n. From the above inequality,
we have

F2m)  F(C2ma) | SR F(2Pe)  F((-2Va)

"o | < P e T |
n—1

(25) < Y S0, (-2)7a, (~2)02)

for all x € X and all nonnegative integers m,n with m < n. By the

condition (2.3), the sequence {w} is a Cauchy sequence for all

x € X. Since ) is complete, the sequence {%} converges for all

x € X. So one can define a mapping A : X — ) by

A(z) := lim M

n—oo  (=2)"

for all z € X. Taking m = 0 and letting n tend to oo in (2.5), we have
the inequality (2.4).

Replacing z,y, z by (—2)"z, (—2)"y, (—2)"z, respectively, and divid-
ing by 2" in (2.2), we obtain

H F(=2)™(x —y)) N F((=2)™(y - 2))
(=2)n (=2)n

(
< HWH + o ((=2)", (-2, (-2)"2)

for all x,y,z € X and all nonnegative integers n. Since (2.3) gives that

: 1 n n n _
Jim S ((=2)", (=2)"y, (=2)"2) = 0
for all z,y,z € X, letting n tend to oo in the above inequality, we see
that A satisfies the inequality (2.1) and so it is additive by Lemma 2.1.

Let A" : X — Y be another additive mapping satisfying (2.4). Since
both A and A’ are additive, we have
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lA@) - 4|

= llA(-2y) — A((-2)|

< 5 (1A(272) = (22| + £ (-27a) — 4'((-2)2)])
< 570, ~(-2)"z, (-2)"7)

=3 L0 (2 (-2pe)

which goes to zero as n — oo for all x € X by (2.3). Therefore, A is a
unique additive mapping satisfying (2.4), as desired. O

COROLLARY 2.3. Let § € [0,00) and p € [0,1) and let f: X — Y be
an odd mapping such that

(2:6) [If(z —y)+ fly—2) + I < 1f @I+ 0=l” + 1yl + 1[=17)

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
A: X — Y such that

(2.7) 1f(z) = A(2)]| <

forallx € X.

20
2-2v

(e

Proof. In Theorem 2.2, take ¢(x,vy,2) := 0(||z||” + ||ly||” + ||2]|P) for
all z,y,z € X. Then we have the desired result. ]

THEOREM 2.4. Let f: X — ) be a mapping with f(0) = 0. If there
is a function ¢ : X3 — [0, 00) satisfying (2.2) and

(2.8) B(x,y, 2) = i Y ) <o
oy Z *"((—2)] (-2) <—2>ﬂ>

for all x,y,z € X, then there exists a unique additive mapping A : X —
Y such that

(2.9) [£(2) = A@)]| <

for all x € X.
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Proof. Replacing z,y, z by 0, = 2)n, = 2),” respectively, and multiply-

ing by 277! in (2.2), since f(0) = 0, we have

21 () =2 () | = 27 (0 o )

for all x € & and all n € N. From the above inequality, we get

20 [err( ) - i (G )|
> () - o)

for all x € & and all nonnegative integers m,n with m < n. From (2.8),
the sequence {(—2)”]‘"(%)} is a Cauchy sequence for all x € X.

Since Y is complete, the sequence {(—2)” f(ﬁ)} converges for all

x € X. So one can define a mapping A : X — ) by

Az) == lim (—2)"f< "’“ >

Nn—00 (—2)"

for all z € X. To prove that A satisfies (2.9), putting m = 0 and letting
n — oo in (2.10), we have

e |<22“ (0. S o) = 300 -)

for all x € X.
Replacing z,y, z by (_ﬂg)n, (_'g)n, (_g)n, respectively, and multiplying
by 2" in (2.2), we obtain
z
_2)n

ors() (i) + e
= HHW ()| 7ol o o)

for all z,y,z € X and all nonnegative integers n. Since (2.8) gives that

o7 *”(( o <—22>n> ="
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for all z,y,z € X, if we let n — oo in the above inequality, then we have
HA(m —y)+Aly—2)+ A(z)H < HA(J:)H

for all z,y,z € X. By Lemma 2.1, the mapping A is additive. The rest
of the proof is similar to the corresponding part of the proof of Theorem
2.2. O

COROLLARY 2.5. Let p > 1 and 6 be non-negative real numbers and
let f: X — Y be an odd mapping such that

@11) [If(z —y) + [y = 2) + F < W @I+ 02l + lyll” + [1=[7)

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
A: X — Y such that

(2.12) 1f(z) = A(z)|| <
forallz € X.

26
2p —2

[l

Proof. In Theorem 2.4, take ¢(x,y,2) := 0(||z||” + ||ly||? + ||z]|P) for
all z,y,z € X. Then, we have the desired result. ]

3. Hyers-Ulam stability using fixed point methods

Now, using the fixed point method, we investigate the Hyers-Ulam
stability of the functional inequality (2.1) in Banach spaces.

THEOREM 3.1. Suppose that an odd mapping f : X — ) satisfies
the inequality

(3.1) 1f (=) + fly—2)+ FE) < f (@) + oz, y, 2)

for all x,y,z € X, where ¢ : X3 — [0,00) is a function. If there exists
L < 1 such that

(3.2) Br9,2) < 3 Lo(2r,2y,22)

for all x,y,z € X, then there exists a unique Cauchy additive mapping
A: X — ) satisfying

(3.3) 1f(z) = A(z)|| <
forallz € X.
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Proof. Consider a set S := {g|g: X — Y} and introduce a general-
ized metric d on S as follows:

d(g,h) = dg(g, h) :==inf Sy (g, h),
where
Se(g,h) :={C € (0,00) : |lg(z) — h(z)]| < Cp(0, —z, x) for all x € X'}

for all g,h € S. Now we show that (S,d) is complete. Let {h,} be a
Cauchy sequence in (S,d). Then, for any ¢ > 0 there exists an integer
N: > 0 such that d(hm,, h,) < € for all m,n > N.. Since d(hy,, hy) =
inf Sg(hm, hn) < € for all m,n > N, there exists C' € (0, ¢) such that

for all m,n > N and all z € X. So {h,(x)} is a Cauchy sequence in )
for each x € X'. Since Y is complete, {h,(z)} converges for each z € X.
Thus a mapping h : X — Y can be defined by

(3.5) h(z) = nh_{rgo hi ()
for all z € X. Letting n — oo in (3.4), we have
m > N = ||hp(x) — h(2)| < ep(0, —z, )
=¢e € Sy(hm,h)
= d(hm, h) = inf Sy(hm, h) < ¢
for all z € X'. This means that the Cauchy sequence {h,} converges to

h in (S,d). Hence (S,d) is complete.
Define a mapping A : S — S by

(3.6) Ah(z) == 2h(%)

for all x € X. We claim that A is strictly contractive on S. For any given
g,h € 8, let Cyp € [0,00] be an arbitrary constant with d(g,h) < Cy.
Then

d(g7 h) < Cgh
= |lg(z) — h(z)|| < Cgno(0, —z,z) forallz e X
x x x oz
ZY 2V < _z
:>H2g<2 2h(2)H_2C’gh¢(0, 2,2) forallz € X

N——— ——

x

= |2 (7

H I\2

that is, d(Ag, Ah) < LCyp,. Hence we see that d(Ag, Ah) < Ld(g, h) for
any g, h € S. Therefore A is strictly contractive mapping on .S with the

— zh(g) H < LCgp¢(0, —x,x) forall z € X,
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Lipschitz constant L € (0,1). Putting x =0, y = —x and z = z in (3.1),
we have

(3.7) 1f(22) = 2f(2)[| < ¢(0, =z, z)
for all x € X. It follows from (3.7) that
09 ro-21(Z)] <ofo-52) < Zoorn

for all z € X. Thus d(f,Af) < % Therefore, it follows from Theorem
1.1 that the sequence {A"™ f} converges to a fixed point A of A, i.e.,

A:X Y, Alz)= lim (Af)(z) = lim gnf(£>

n—00 on

and A(2x) = 2A(z) for all x € X. Also A is the unique fixed point of A
in the set S* = {g € S|d(f,g) < oo} and

AAD) < T ML) S 55

i.e., the inequality (3.3) holds for all z € X. It follows from the definition
of A and (3.1) that

HA(:U—y)—I-A( —2)+ A(z H<HA H

for all z,y,z € X. By Lemma 2.1, the mapping A : X — ) is a Cauchy
additive mapping. Therefore, there exists a unique Cauchy additive
mapping A : X — Y satisfying (3.3). O

COROLLARY 3.2. Let p > 1 and 6 be non-negative real numbers and
let f: X — Y be an odd mapping such that

B.9) [[f(x—w)+ fly—2) + FI < If @I+ 0P + lyl” + 1[2]")

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
A: X — Y such that

(3.10) 1f(z) — A(2)]| <
forallxz € X.

2P +1
% —

501l

Proof. In Theorem 3.1, take ¢(z,y,z) := 0(||z||” + ||y||P + ||2]|P) for
all z,y,z € X. Then, we can choose L = 2P and we have the desired
result. O
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THEOREM 3.3. Suppose that an odd mapping f : X — ) satisfies
the inequality

(3.11) 1f(z—y)+ fly—2)+ fEI < f @) + ¢, y,2)

for all x,y,z € X, where ¢ : X3 — [0,00) is a function. If there exists
L < 1 such that
Ty z)

(3.12) o(z,y,2) < 2L¢<§, g2

for all x,y,z € X, then there exists a unique Cauchy additive mapping
A: X — Y satisfying

(3.13) 1f(z) — A(z)|| <
forallz € X.

Proof. Consider the complete generalized metric space (S, d) given in
the proof of Theorem 3.1. Now we consider the linear mapping A : S —
S given by

1
Ah(x) = 5h(2x)
for all x € X. For any given g,h € S, let Cg, € [0,00] be an arbitrary
constant with d(g, h) < Cgj,. Hence we obtain
d(Ag, Ah) < Ld(g, h)

for all g,h € S. It follows from (3.7) that d(f,Af) < 5. The rest of
the proof is similar to the corresponding part of the proof of Theorem
3.1. ]

COROLLARY 3.4. Let 6 € [0,00) and p € [0,1) and let f : X — Y be
an odd mapping such that

B.14) [If(z —y) + [y = 2) + F < Wf @I + 02" + lyll” + [|=[”)

for all x,y,z € X. Then there exists a unique Cauchy additive mapping
A: X — Y such that

(3.15) 1f (@) — A(z)| <
forallz € X.

Proof. In Theorem 3.3, take ¢(x,y,2) := 0(||z]|P + ||ly||” + ||z||") for
all z,y,2 € X. Then we can choose L = 2P~ and we have the desired
result. O

1+ 2P
2-2v

0"
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