JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **26**, No. 4, November 2013 http://dx.doi.org/10.14403/jcms.2013.26.4.671

ON THE HYERS-ULAM STABILITY OF AN ADDITIVE FUNCTIONAL INEQUALITY

SANG-BAEK LEE*, JAE-HYEONG BAE**, AND WON-GIL PARK***

ABSTRACT. In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality

$$|f(x - y) + f(y - z) + f(z)|| \le ||f(x)||$$

in Banach spaces.

1. Introduction and preliminaries

In 1940, Ulam [6] suggested the stability problem of functional equations concerning the stability of group homomorphisms as follows: Let (\mathcal{G}, \circ) be a group and let (\mathcal{H}, \star, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta = \delta(\varepsilon) > 0$ such that if a mapping $f : \mathcal{G} \to \mathcal{H}$ satisfies the inequality

$$d(f(x \circ y), f(x) \star f(y)) < \delta$$

for all $x, y \in \mathcal{G}$, then a homomorphism $F : \mathcal{G} \to \mathcal{H}$ exits with

$$d(f(x), F(x)) < \varepsilon$$

for all $x \in \mathcal{G}$?

In 1941, Hyers [2] gave a first (partial) affirmative answer to the question of Ulam for Banach spaces as follows: If $\delta > 0$ and if $f : \mathcal{E} \to \mathcal{F}$ is a mapping between Banach spaces \mathcal{E} and \mathcal{F} satisfying

$$\left\|f(x+y) - f(x) - f(y)\right\| \le \delta$$

Received March 27, 2013; Accepted October 11, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 39B82; Secondary 46Bxx, 47Jxx.

Key words and phrases: additive functional inequality, Banach space.

Correspondence should be addressed to Won-gil Park, wgpark@mokwon.ac.kr.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013013682).

for all $x, y \in \mathcal{E}$, then there is a unique additive mapping $A : \mathcal{E} \to \mathcal{F}$ such that

$$\left\|f(x) - A(x)\right\| \le \delta$$

for all $x, y \in \mathcal{E}$.

We will recall a fundamental result in fixed point theory for explicit later use.

THEOREM 1.1. (The alternative of fixed point) [1, 5] Suppose we are given a complete generalized metric space (\mathcal{X}, d) and a strictly contractive mapping $\Lambda : \mathcal{X} \to \mathcal{X}$, with the Lipschitz constant L. Then, for each given element $x \in \mathcal{X}$, either

$$d(\Lambda^n x, \Lambda^{n+1} x) = \infty$$

for all nonnegative integers n or there exists a positive integer n_0 such that

- (a) $d(\Lambda^n x, \Lambda^{n+1}) < \infty$ for all $n \ge n_0$;
- (b) The sequence $(\Lambda^n x)$ is convergent to a fixed point y^* of Λ ;
- (c) y^* is the unique fixed point of Λ in the set
- $Y = \{y \in X | d(\Lambda^{n_0}, y) < \infty\};$ (d) $d(y, y^*) \leq \frac{1}{1-L} d(y, \Lambda y)$ for all $y \in Y$.

2. Hyers-Ulam stability in Banach spaces

Throughout this paper, let \mathcal{X} be a normed linear space and \mathcal{Y} a Banach space. In 2007, Park, Cho and Han [4] proved the Hyers-Ulam stability of the additive functional inequality

$$\left\|f(x) + f(y) + f(z)\right\| \le \left\|f(x+y+z)\right\|$$

in Banach spaces. In 2011, Lee, Park and Shin [3] prove the Hyers-Ulam stability of the additive functional inequality

$$\|f(2x) + f(2y) + 2f(z)\| \le \|2f(x+y+z)\|$$

in Banach spaces.

In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality

$$||f(x-y) + f(y-z) + f(z)|| \le ||f(x)||$$

in Banach spaces.

LEMMA 2.1. Let $f : \mathcal{X} \to \mathcal{Y}$ be a mapping. Then it is additive if and only if it satisfies

(2.1)
$$||f(x-y) + f(y-z) + f(z)|| \le ||f(x)||$$

for all $x, y, z \in \mathcal{X}$.

Proof. If f is additive, then clearly

$$|f(x-y) + f(y-z) + f(z)|| = ||f(x)||$$

for all $x, y, z \in \mathcal{X}$.

Assume that f satisfies (2.1). Letting x = y = z = 0 in (2.1), we gain $||3f(0)|| \le ||f(0)||$ and so f(0) = 0. Putting x = z = 0 in (2.1), we get

$$||f(-y) + f(y)|| \le ||f(0)|| = 0$$

and so f(-y) = -f(y) for all $y \in \mathcal{X}$. Letting x = 0 and replacing z by -z in (2.1), we have

$$||f(y+z) + f(-y) + f(-z)|| \le ||f(0)|| = 0$$

for all $y, z \in \mathcal{X}$. Thus we obtain

$$f(y+z) = f(y) + f(z)$$

for all $y, z \in \mathcal{X}$.

THEOREM 2.2. Let $f : \mathcal{X} \to \mathcal{Y}$ be a mapping with f(0) = 0. If there is a function $\varphi : X^3 \to [0, \infty)$ satisfying

(2.2)
$$||f(x-y) + f(y-z) + f(z)|| \le ||f(x)|| + \varphi(x,y,z)$$

and

(2.3)
$$\widetilde{\varphi}(x,y,z) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi \left((-2)^j x, (-2)^j y, (-2)^j z \right) < \infty$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique additive mapping $A : \mathcal{X} \to \mathcal{Y}$ such that

(2.4)
$$\left\|f(x) - A(x)\right\| \le \frac{1}{2}\widetilde{\varphi}(0, -x, x)$$

for all $x \in \mathcal{X}$.

Proof. Replacing x, y, z by $0, -(-2)^n x, (-2)^n x$, respectively, and dividing by 2^{n+1} in (2.2), since f(0) = 0, we get

$$\left\|\frac{f\big((-2)^{n+1}x\big)}{(-2)^{n+1}} - \frac{f\big((-2)^n x\big)}{(-2)^n}\right\| \le \frac{1}{2^{n+1}}\varphi\big(0, -(-2)^n x, (-2)^n x\big)$$

for all $x \in \mathcal{X}$ and all nonnegative integers n. From the above inequality, we have

$$\left\|\frac{f((-2)^{n}x)}{(-2)^{n}} - \frac{f((-2)^{m}x)}{(-2)^{m}}\right\| \leq \sum_{j=m}^{n-1} \left\|\frac{f((-2)^{j+1}x)}{(-2)^{j+1}} - \frac{f((-2)^{j}x)}{(-2)^{j}}\right\|$$

$$\leq \sum_{j=m}^{n-1} \frac{1}{2^{j+1}}\varphi(0, -(-2)^{j}x, (-2)^{j}x)$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, n with m < n. By the condition (2.3), the sequence $\left\{\frac{f((-2)^n x)}{(-2)^n}\right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{\frac{f((-2)^n x)}{(-2)^n}\right\}$ converges for all $x \in \mathcal{X}$. So one can define a mapping $A : \mathcal{X} \to \mathcal{Y}$ by

$$A(x) := \lim_{n \to \infty} \frac{f\left((-2)^n x\right)}{(-2)^n}$$

for all $x \in \mathcal{X}$. Taking m = 0 and letting n tend to ∞ in (2.5), we have the inequality (2.4).

Replacing x, y, z by $(-2)^n x, (-2)^n y, (-2)^n z$, respectively, and dividing by 2^n in (2.2), we obtain

$$\begin{aligned} \left\| \frac{f\big((-2)^n(x-y)\big)}{(-2)^n} + \frac{f\big((-2)^n(y-z)\big)}{(-2)^n} + \frac{f\big((-2)^n(z)\big)}{(-2)^n} \right\| \\ & \le \left\| \frac{2f\big((-2)^n(x)\big)}{(-2)^n} \right\| + \frac{1}{2^n}\varphi\big((-2)^nx, (-2)^ny, (-2)^nz\big) \end{aligned}$$

for all $x, y, z \in \mathcal{X}$ and all nonnegative integers n. Since (2.3) gives that

$$\lim_{n \to \infty} \frac{1}{2^n} \varphi ((-2)^n x, (-2)^n y, (-2)^n z) = 0$$

for all $x, y, z \in \mathcal{X}$, letting n tend to ∞ in the above inequality, we see that A satisfies the inequality (2.1) and so it is additive by Lemma 2.1.

Let $A' : \mathcal{X} \to \mathcal{Y}$ be another additive mapping satisfying (2.4). Since both A and A' are additive, we have

$$\begin{split} \|A(x) - A'(x)\| \\ &= \frac{1}{2^n} \|A((-2)^n x) - A'((-2)^n x)\| \\ &\leq \frac{1}{2^n} (\|A((-2)^n x) - f((-2)^n x)\| + \|f((-2)^n x) - A'((-2)^n x)\|) \\ &\leq \frac{1}{2^n} \widetilde{\varphi} (0, -(-2)^n x, (-2)^n x) \\ &= \sum_{j=n}^{\infty} \frac{1}{2^j} \varphi (0, -(-2)^j x, (-2)^j x) \end{split}$$

which goes to zero as $n \to \infty$ for all $x \in \mathcal{X}$ by (2.3). Therefore, A is a unique additive mapping satisfying (2.4), as desired.

COROLLARY 2.3. Let $\theta \in [0,\infty)$ and $p \in [0,1)$ and let $f : \mathcal{X} \to \mathcal{Y}$ be an odd mapping such that

(2.6)
$$||f(x-y) + f(y-z) + f(z)|| \le ||f(x)|| + \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A : \mathcal{X} \to \mathcal{Y}$ such that

(2.7)
$$||f(x) - A(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p$$

for all $x \in \mathcal{X}$.

Proof. In Theorem 2.2, take $\varphi(x, y, z) := \theta(||x||^p + ||y||^p + ||z||^p)$ for all $x, y, z \in \mathcal{X}$. Then we have the desired result.

THEOREM 2.4. Let $f : \mathcal{X} \to \mathcal{Y}$ be a mapping with f(0) = 0. If there is a function $\varphi : X^3 \to [0, \infty)$ satisfying (2.2) and

(2.8)
$$\widetilde{\varphi}(x,y,z) := \sum_{j=1}^{\infty} 2^j \varphi\left(\frac{x}{(-2)^j}, \frac{y}{(-2)^j}, \frac{z}{(-2)^j}\right) < \infty$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique additive mapping $A : \mathcal{X} \to \mathcal{Y}$ such that

(2.9)
$$\left\|f(x) - A(x)\right\| \le \frac{1}{2}\widetilde{\varphi}(0, -x, x)$$

for all $x \in \mathcal{X}$.

Proof. Replacing x, y, z by $0, \frac{-x}{(-2)^n}, \frac{x}{(-2)^n}$, respectively, and multiplying by 2^{n-1} in (2.2), since f(0) = 0, we have

$$\left\| (-2)^n f\left(\frac{x}{(-2)^n}\right) - (-2)^{n-1} f\left(\frac{x}{(-2)^{n-1}}\right) \right\| \le 2^{n-1} \varphi\left(0, \frac{-x}{(-2)^n}, \frac{x}{(-2)^n}\right)$$

for all $x \in \mathcal{X}$ and all $n \in \mathbb{N}$. From the above inequality, we get

(2.10)
$$\left\| (-2)^n f\left(\frac{x}{(-2)^n}\right) - (-2)^m f\left(\frac{x}{(-2)^m}\right) \right\|$$
$$\leq \sum_{j=m+1}^n \left\| (-2)^j f\left(\frac{x}{(-2)^j}\right) - (-2)^{j-1} f\left(\frac{x}{(-2)^{j-1}}\right) \right\|$$
$$\leq \sum_{j=m+1}^n 2^{j-1} \varphi\left(0, \frac{-x}{(-2)^j}, \frac{x}{(-2)^j}\right)$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, n with m < n. From (2.8), the sequence $\left\{ (-2)^n f\left(\frac{x}{(-2)^n}\right) \right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{ (-2)^n f\left(\frac{x}{(-2)^n}\right) \right\}$ converges for all $x \in \mathcal{X}$. So one can define a mapping $A : \mathcal{X} \to \mathcal{Y}$ by

$$A(x) := \lim_{n \to \infty} (-2)^n f\left(\frac{x}{(-2)^n}\right)$$

for all $x \in \mathcal{X}$. To prove that A satisfies (2.9), putting m = 0 and letting $n \to \infty$ in (2.10), we have

$$\|f(x) - A(x)\| \le \sum_{j=1}^{\infty} 2^{j-1} \varphi\left(0, \frac{-x}{(-2)^j}, \frac{x}{(-2)^j}\right) = \frac{1}{2} \widetilde{\varphi}(0, -x, x)$$

for all $x \in \mathcal{X}$.

Replacing x, y, z by $\frac{x}{(-2)^n}, \frac{y}{(-2)^n}, \frac{z}{(-2)^n}$, respectively, and multiplying by 2^n in (2.2), we obtain

$$\left\| (-2)^n f\left(\frac{x-y}{(-2)^n}\right) + (-2)^n f\left(\frac{y-z}{(-2)^n}\right) + (-2)^n f\left(\frac{z}{(-2)^n}\right) \right\|$$

$$\le \left\| (-2)^n f\left(\frac{x}{(-2)^n}\right) \right\| + 2^n \varphi\left(\frac{x}{(-2)^n}, \frac{y}{(-2)^n}, \frac{z}{(-2)^n}\right)$$

for all $x, y, z \in \mathcal{X}$ and all nonnegative integers n. Since (2.8) gives that

$$\lim_{n \to \infty} 2^n \varphi\left(\frac{x}{(-2)^n}, \frac{y}{(-2)^n}, \frac{z}{(-2)^n}\right) = 0$$

for all $x, y, z \in \mathcal{X}$, if we let $n \to \infty$ in the above inequality, then we have

$$||A(x-y) + A(y-z) + A(z)|| \le ||A(x)||$$

for all $x, y, z \in \mathcal{X}$. By Lemma 2.1, the mapping A is additive. The rest of the proof is similar to the corresponding part of the proof of Theorem 2.2.

COROLLARY 2.5. Let p > 1 and θ be non-negative real numbers and let $f : \mathcal{X} \to \mathcal{Y}$ be an odd mapping such that

$$(2.11) ||f(x-y) + f(y-z) + f(z)|| \le ||f(x)|| + \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A : \mathcal{X} \to \mathcal{Y}$ such that

(2.12)
$$||f(x) - A(x)|| \le \frac{2\theta}{2^p - 2} ||x||^p$$

for all $x \in \mathcal{X}$.

Proof. In Theorem 2.4, take $\varphi(x, y, z) := \theta(||x||^p + ||y||^p + ||z||^p)$ for all $x, y, z \in \mathcal{X}$. Then, we have the desired result.

3. Hyers-Ulam stability using fixed point methods

Now, using the fixed point method, we investigate the Hyers-Ulam stability of the functional inequality (2.1) in Banach spaces.

THEOREM 3.1. Suppose that an odd mapping $f : \mathcal{X} \to \mathcal{Y}$ satisfies the inequality

(3.1)
$$||f(x-y) + f(y-z) + f(z)|| \le ||f(x)|| + \phi(x,y,z)$$

for all $x, y, z \in \mathcal{X}$, where $\phi : \mathcal{X}^3 \to [0, \infty)$ is a function. If there exists L < 1 such that

(3.2)
$$\phi(x, y, z) \le \frac{1}{2} L \phi(2x, 2y, 2z)$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique Cauchy additive mapping $A : \mathcal{X} \to \mathcal{Y}$ satisfying

(3.3)
$$||f(x) - A(x)|| \le \frac{L}{2 - 2L}\phi(0, -x, x)$$

for all $x \in \mathcal{X}$.

Proof. Consider a set $S := \{g \mid g : \mathcal{X} \to \mathcal{Y}\}$ and introduce a generalized metric d on S as follows:

$$d(g,h) = d_{\phi}(g,h) := \inf S_{\phi}(g,h),$$

where

$$S_{\phi}(g,h) := \{ C \in (0,\infty) : \|g(x) - h(x)\| \le C\phi(0, -x, x) \text{ for all } x \in \mathcal{X} \}$$

for all $g, h \in S$. Now we show that (S, d) is complete. Let $\{h_n\}$ be a Cauchy sequence in (S, d). Then, for any $\varepsilon > 0$ there exists an integer $N_{\varepsilon} > 0$ such that $d(h_m, h_n) < \varepsilon$ for all $m, n \ge N_{\varepsilon}$. Since $d(h_m, h_n) = \inf S_{\phi}(h_m, h_n) < \varepsilon$ for all $m, n \ge N_{\varepsilon}$, there exists $C \in (0, \varepsilon)$ such that

(3.4)
$$||h_m(x) - h_n(x)|| \le C\phi(0, -x, x) \le \varepsilon\phi(0, -x, x)$$

for all $m, n \geq N_{\varepsilon}$ and all $x \in \mathcal{X}$. So $\{h_n(x)\}$ is a Cauchy sequence in \mathcal{Y} for each $x \in \mathcal{X}$. Since \mathcal{Y} is complete, $\{h_n(x)\}$ converges for each $x \in \mathcal{X}$. Thus a mapping $h : \mathcal{X} \to \mathcal{Y}$ can be defined by

(3.5)
$$h(x) := \lim_{n \to \infty} h_n(x)$$

for all $x \in \mathcal{X}$. Letting $n \to \infty$ in (3.4), we have

$$m \ge N_{\varepsilon} \Rightarrow ||h_m(x) - h(x)|| \le \varepsilon \phi(0, -x, x)$$
$$\Rightarrow \varepsilon \in S_{\phi}(h_m, h)$$
$$\Rightarrow d(h_m, h) = \inf S_{\phi}(h_m, h) \le \varepsilon$$

for all $x \in \mathcal{X}$. This means that the Cauchy sequence $\{h_n\}$ converges to h in (S, d). Hence (S, d) is complete.

Define a mapping $\Lambda: S \to S$ by

(3.6)
$$\Lambda h(x) := 2h\left(\frac{x}{2}\right)$$

for all $x \in \mathcal{X}$. We claim that Λ is strictly contractive on S. For any given $g, h \in S$, let $C_{gh} \in [0, \infty]$ be an arbitrary constant with $d(g, h) \leq C_{gh}$. Then

$$d(g,h) \leq C_{gh}$$

$$\Rightarrow ||g(x) - h(x)|| \leq C_{gh}\phi(0, -x, x) \text{ for all } x \in \mathcal{X}$$

$$\Rightarrow \left\| 2g\left(\frac{x}{2}\right) - 2h\left(\frac{x}{2}\right) \right\| \leq 2C_{gh}\phi\left(0, -\frac{x}{2}, \frac{x}{2}\right) \text{ for all } x \in \mathcal{X}$$

$$\Rightarrow \left\| 2g\left(\frac{x}{2}\right) - 2h\left(\frac{x}{2}\right) \right\| \leq LC_{gh}\phi(0, -x, x) \text{ for all } x \in \mathcal{X},$$

that is, $d(\Lambda g, \Lambda h) \leq LC_{gh}$. Hence we see that $d(\Lambda g, \Lambda h) \leq Ld(g, h)$ for any $g, h \in S$. Therefore Λ is strictly contractive mapping on S with the

Lipschitz constant $L \in (0, 1)$. Putting x = 0, y = -x and z = x in (3.1), we have

(3.7)
$$||f(2x) - 2f(x)|| \le \phi(0, -x, x)$$

for all $x \in \mathcal{X}$. It follows from (3.7) that

(3.8)
$$\left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| \le \phi\left(0, -\frac{x}{2}, \frac{x}{2}\right) \le \frac{L}{2}\phi(0, -x, x)$$

for all $x \in \mathcal{X}$. Thus $d(f, \Lambda f) \leq \frac{L}{2}$. Therefore, it follows from Theorem 1.1 that the sequence $\{\Lambda^n f\}$ converges to a fixed point A of Λ , i.e.,

$$A: \mathcal{X} \to \mathcal{Y}, \quad A(x) = \lim_{n \to \infty} (\Lambda f)(x) = \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$$

and A(2x) = 2A(x) for all $x \in \mathcal{X}$. Also A is the unique fixed point of Λ in the set $S^* = \{g \in S \mid d(f,g) < \infty\}$ and

$$d(A,f) \leq \frac{1}{1-L} d(\Lambda f,f) \leq \frac{L}{2-2L}$$

i.e., the inequality (3.3) holds for all $x \in \mathcal{X}$. It follows from the definition of A and (3.1) that

$$||A(x-y) + A(y-z) + A(z)|| \le ||A(x)||$$

for all $x, y, z \in \mathcal{X}$. By Lemma 2.1, the mapping $A : \mathcal{X} \to \mathcal{Y}$ is a Cauchy additive mapping. Therefore, there exists a unique Cauchy additive mapping $A : \mathcal{X} \to \mathcal{Y}$ satisfying (3.3).

COROLLARY 3.2. Let p > 1 and θ be non-negative real numbers and let $f : \mathcal{X} \to \mathcal{Y}$ be an odd mapping such that

(3.9)
$$||f(x-y) + f(y-z) + f(z)|| \le ||f(x)|| + \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A : \mathcal{X} \to \mathcal{Y}$ such that

(3.10)
$$||f(x) - A(x)|| \le \frac{2^p + 1}{2^p - 2} \theta ||x||^p$$

for all $x \in \mathcal{X}$.

Proof. In Theorem 3.1, take $\phi(x, y, z) := \theta(||x||^p + ||y||^p + ||z||^p)$ for all $x, y, z \in \mathcal{X}$. Then, we can choose $L = 2^{1-p}$ and we have the desired result.

THEOREM 3.3. Suppose that an odd mapping $f : \mathcal{X} \to \mathcal{Y}$ satisfies the inequality

(3.11)
$$||f(x-y) + f(y-z) + f(z)|| \le ||f(x)|| + \phi(x,y,z)$$

for all $x, y, z \in \mathcal{X}$, where $\phi : \mathcal{X}^3 \to [0, \infty)$ is a function. If there exists L < 1 such that

(3.12)
$$\phi(x,y,z) \le 2L\phi\left(\frac{x}{2},\frac{y}{2},\frac{z}{2}\right)$$

for all $x, y, z \in \mathcal{X}$, then there exists a unique Cauchy additive mapping $A : \mathcal{X} \to \mathcal{Y}$ satisfying

(3.13)
$$||f(x) - A(x)|| \le \frac{1}{2 - 2L}\phi(0, -x, x)$$

for all $x \in \mathcal{X}$.

Proof. Consider the complete generalized metric space (S, d) given in the proof of Theorem 3.1. Now we consider the linear mapping $\Lambda : S \to S$ given by

$$\Lambda h(x) = \frac{1}{2}h(2x)$$

for all $x \in \mathcal{X}$. For any given $g, h \in S$, let $C_{gh} \in [0, \infty]$ be an arbitrary constant with $d(g, h) \leq C_{gh}$. Hence we obtain

$$d(\Lambda g, \Lambda h) \le Ld(g, h)$$

for all $g, h \in S$. It follows from (3.7) that $d(f, \Lambda f) \leq \frac{1}{2}$. The rest of the proof is similar to the corresponding part of the proof of Theorem 3.1.

COROLLARY 3.4. Let $\theta \in [0, \infty)$ and $p \in [0, 1)$ and let $f : \mathcal{X} \to \mathcal{Y}$ be an odd mapping such that

$$(3.14) ||f(x-y) + f(y-z) + f(z)|| \le ||f(x)|| + \theta(||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in \mathcal{X}$. Then there exists a unique Cauchy additive mapping $A : \mathcal{X} \to \mathcal{Y}$ such that

(3.15)
$$||f(x) - A(x)|| \le \frac{1+2^p}{2-2^p} \theta ||x||^p$$

for all $x \in \mathcal{X}$.

Proof. In Theorem 3.3, take $\phi(x, y, z) := \theta(||x||^p + ||y||^p + ||z||^p)$ for all $x, y, z \in \mathcal{X}$. Then we can choose $L = 2^{p-1}$ and we have the desired result.

References

- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.
- [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
- [3] J. Lee, C. Park, and D. Shin, Stability of an additive functional inequality in proper CQ*-algebras, Bull. Korean Math. Soc. 48 (2011), 853-871.
- [4] C. Park, Y. S. Cho, and M. H. Han, Functional inequalities associated with Jordan -von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
- [5] I. A. Rus, Principles and Applications of Fixed Point Theory, (in Romanian), Editura Dacia, Cluj-Napoca, 1979.
- [6] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: mcsquarelsb@hanmail.net

**

Humanitas College Kyung Hee University Yongin 446-701, Republic of Korea *E-mail*: jhbae@khu.ac.kr

Department of Mathematics Education Mokwon University Daejeon 302-729, Republic of Korea *E-mail*: wgpark@mokwon.ac.kr