Abstract
The new renewable energy became popular as a clean and sustainable alternative energy under the circumstances that the entire world is facing severe abnormal climate due to the use of fossil fuel, and among which, solar energy can be obtained anywhere and is not difficult to apply it into the existing buildings, which makes it possible to be widely distributed. However, as PV module is installed into a single plate system, it shows structural weaknesses which are vulnerable to wind load and give loss to design elements in external appearance. Accordingly, this study planned one-step parallel system to complement the problems occurring from a single plate system and used STAR-CCM+ V.8 made by CD-Adapco, a computational fluid dynamics(CFD) simulation tool to measure wind load stability and support based on the design standards for a single plate system and one-step parallel system. Building height was limited to less than 10m and wind speed was given when increasing from 35m/s to 50m/s by 5m/s on PV system installed into the flat roof. In this case, our analysis suggested that step-one parallel system was in class 7-9 according to Beaufort's wind power classification, which did not have an impact on the fixed PV system, and the single plate system is considered to cause risks in designing wind speed in central districts because it is more than wind power class 12.