DOI QR코드

DOI QR Code

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet

초기 직경이 n-heptane 액적 연소 특성에 미치는 영향

  • 서현규 (국립공주대학교 기계자동차공학부)
  • Received : 2013.04.30
  • Accepted : 2013.06.24
  • Published : 2013.06.30

Abstract

The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Keywords

References

  1. T. I. Farouk, F. L. Dryer, On the extinction characteristics of alcohol droplet combustion under microgravity conditions - A numerical study, Combustion and Flame, 159, 3208-3223, 2012. https://doi.org/10.1016/j.combustflame.2012.04.005
  2. G. M. Faeth, Current status of droplet and liquid combustion, Progress in Energy and Combustion Science, 3, 191-224, 1977. https://doi.org/10.1016/0360-1285(77)90012-0
  3. F. A. Williams, Droplet burning, in: T.H. Cochran (Eds.), Combustion Experiments in Zero-Gravity Laboratory, Progress in Astronautics and Aeronautics, 73, 31-48, 1981.
  4. C. K. Law, Recent Advances in droplet vaporization and combustion, Progress in Energy and Combustion Science, 8, 171-201, 1982. https://doi.org/10.1016/0360-1285(82)90011-9
  5. C. K. Law, and G. M. Faeth, Opportunities and challenges of combustion in microgravity, Progress in Energy and Combustion Science, 20, 65-113, 1994. https://doi.org/10.1016/0360-1285(94)90006-X
  6. A. J. Marchese, F. L. Dryer, V. Nayagam, Numerical modeling of isolated n-alkane droplet flames: initial comparisons with ground and space-based microgravity experiments, Combustion and flame, 116, 432-459, 1999. https://doi.org/10.1016/S0010-2180(98)00109-6
  7. C. K. Law, Unsteady droplet combustion with droplet heating, Combustion and Flame, 26, 17-22, 1976. https://doi.org/10.1016/0010-2180(76)90053-5
  8. S. Y. Cho, R. A. Yetter, F. L. Dryer, A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction, Journal of Computational Physics, 102, 160-179, 1992. https://doi.org/10.1016/S0021-9991(05)80013-0
  9. S. Y. Cho, F. L. Dryer, A numerical study of the unsteady burning behaviour of n-heptane droplets, Combustion Theory and Modelling, 3, 267-280, 1999. https://doi.org/10.1088/1364-7830/3/2/004
  10. G. M. Faeth, Evaporation and combustion of sprays, Progress in Energy and Combustion Science, 9, 1-76, 1983. https://doi.org/10.1016/0360-1285(83)90005-9
  11. G. A. Godsave, Studies of the combustion of drops in a fuel spray-the burning of single drops of fuel, Proceedings of the Combustion Institute, 4, 818-830, 1953. https://doi.org/10.1016/S0082-0784(53)80107-4
  12. S. Ulzama, E. Specht, An analytical study of droplet combustion under microgravity : Quasi-steady transient approach, Proceedings of Combustion Institute, 31, 2301-2308, 2007. https://doi.org/10.1016/j.proci.2006.07.134
  13. S. Kumagai, and H. Isoda, Combustion of fuel droplets in a falling chamber, Proceedings of combustion institute, 6, 726-731, 1957. https://doi.org/10.1016/S0082-0784(57)80100-3
  14. S. Kumagai, T. Sakai, S. Okajima, Combustion of free fuel droplets in a freely falling chamber, Proceedings of combustion institute, 13, 779-785, 1971. https://doi.org/10.1016/S0082-0784(71)80080-2
  15. J. C. Yang, C. T. Avedisian, The combustion of unsupported heptane/hexadecane mixture droplets at low gravity, Proceedings of combustion institute, 22, 2037-2044, 1989. https://doi.org/10.1016/S0082-0784(89)80219-X
  16. H. Hara, S. Kumagai, Experimental investigation of free droplet combustion under microgravity, Proceedings of combustion institute, 23, 1605-1610, 1991. https://doi.org/10.1016/S0082-0784(06)80432-7
  17. M. Y. Choi, F. L. Dryer, J. B. Hagard, Observations on a slow burning regime for hydrocarbon droplets: n-Heptane/air results, Proceedings of combustion institute, 23, 1597-1604, 1991. https://doi.org/10.1016/S0082-0784(06)80431-5
  18. V. Nayagam, J. B. Haggard, R. Colantonio, A. J. Marchese, B. J. Zhang, and F. A. Williams, Microgravity n-Heptane Droplet Combustion in Oxygen-Helium Mixtures at Atmospheric Pressure, AIAA Journal, 26, 1369-1378, 1998.
  19. W.A. Sirignano, The Formulation of Spray Combustion Models: Resolution Compared to Droplet Spacing, Journal of Heat Transfer, 108, 633-639, 1986. https://doi.org/10.1115/1.3246983
  20. G. M. Faeth, Mixing, transport and combustion in sprays, Progress in Energy and Combustion Science, 13, 293-345, 1987. https://doi.org/10.1016/0360-1285(87)90002-5
  21. S. R. Turns, An Introduction to Combustion: Concepts and Applications, McGraw-Hill Series, USA, 1996, p. 319.
  22. H. S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Second ed., Oxford University Press, New York, 1959.

Cited by

  1. Effect of Initial Diameter on the Soot Generation of Toluene Fuel Droplet vol.20, pp.4, 2015, https://doi.org/10.15435/JILASSKR.2015.20.4.261
  2. Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet vol.19, pp.4, 2014, https://doi.org/10.15435/JILASSKR.2014.19.4.211