DOI QR코드

DOI QR Code

Study on antioxidative, antidiabetic and antiobesity activity of solvent fractions of smilax china L. leaf extract

청미래덩굴잎 추출물 용매분획의 항산화, 항당뇨 및 항비만 활성연구

  • Kang, Yun Hwan (Well-being Bioproducts RIC, Kangwon National University) ;
  • Lee, Young-Sil (Center for Nutraceutical and Pharmaceutical Materials, Myongji University) ;
  • Kim, Kyoung Kon (Department of Bio-Health Technology, Kangwon National University) ;
  • Kim, Dae Jung (Well-being Bioproducts RIC, Kangwon National University) ;
  • Kim, Tae Woo (Well-being Bioproducts RIC, Kangwon National University) ;
  • Choe, Myeon (Well-being Bioproducts RIC, Kangwon National University)
  • 강윤환 (강원대학교 강원웰빙특산물산업화지역혁신센터) ;
  • 이영실 (명지대학교 농생명바이오식의약소재개발사업단) ;
  • 김경곤 (강원대학교 생명건강공학과) ;
  • 김대중 (강원대학교 강원웰빙특산물산업화지역혁신센터) ;
  • 김태우 (강원대학교 강원웰빙특산물산업화지역혁신센터) ;
  • 최면 (강원대학교 강원웰빙특산물산업화지역혁신센터)
  • Received : 2013.09.06
  • Accepted : 2013.10.17
  • Published : 2013.10.31

Abstract

Smilax china L., a native plant found in Asian countries, has several medicinal properties including antioxidant, anti-inflammatory, and anti-cancer effects. Although the root of the plant is commonly used as traditional herbal medicine in Korea and China, the medicinal properties of the leaves have not gained the same attention. In this study, we analyzed the antioxidant activity, ${\alpha}$-glucosidase inhibitory effect and lipid accumulation inhibition effect of Smilax china L. leaf water extract (SCLE) and its solvent fractions. SCLE was fractionated by using a series of organic solvents, including ethylacetate (EA) and n-butanol (BuOH). The EA fraction had the highest total polyphenol content ($440.20{\pm}12.67$ mg GAE/g) and total flavonoid content ($215.14{\pm}24.83$ mg QE/g). The radical scavenging activity $IC_{50}$ values of the EA fraction for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) were 0.022 mg/mL and 0.13 mg/mL, respectively. Further, SOD-like activity and reducing power values of the EA fraction were higher than those of the other fractions. However, both the ${\alpha}$-glucosidase and lipid accumulation inhibition assays showed that the BuOH fraction ($83.35{\pm}4.18%$ at 1 mg/mL) and water extract ($11.27{\pm}2.67%$) were more effective than the EA fraction ($64.13{\pm}6.35%$, and $45.66{\pm}7.20%$). These results provide new insights into the potential anti-diabetic and anti-obesity effects of Smilax china L. leaf.

본 연구에서 SCLE와 그 분획의 총 폴리페놀과 플라보노이드의 함량을 측정한 결과 SCLE/EA에서 가장 많은 함량이 확인되었으며, DPPH 및 ABTS radical scavenging activity, SOD-like activity, reducing power 측정을 통한 항산화 활성을 비교한 결과도 폴리페놀과 플라보노이드함량 측정 결과와 마찬가지로 SCLE/EA에서 높은 활성을 명확하게 확인할 수 있었다. 그리고 SCLE 및 분획의 항당뇨 효능을 ${\alpha}$-glucosidase 활성억제능을 측정함으로써 비교한 결과 항산화력과 달리 SCLE/BuOH에서 가장 높은 활성을 확인할 수 있었으며, 1 mg/mL 기준으로 acarbose의 ${\alpha}$-glucosidase 활성억제능과 비교하여 2배 이상의 활성을 관찰할 수 있었다. 또한 당뇨와 비만의 강한 관련성이 알려진 상황에서 SCLE 및 그 분획의 3T3-L1 세포 분화 억제능력을 확인한 결과 SCLE와 SCLE/FW에서 가장 강한 억제효과를 확인할 수 있었다. 본 연구를 통해 SCLE가 다방면에서 당뇨의 개선과 예방을 위해 효능을 나타낼 수 있음을 확인하였고, 이는 SCLE가 neutraceuticals 소재로서의 개발가치가 높음을 시사한다.

Keywords

References

  1. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21(9): 1414-1431 https://doi.org/10.2337/diacare.21.9.1414
  2. Kim SG, Choi DS. Epidemiology and current status of diabetes in Korea. Hanyang Med Rev 2009; 29(2): 122-129
  3. Choi YY, Sohn HS, Shin HT. Clinical benefits of self-monitoring of blood glucose in non-insulin treated patients with type 2 diabetes: a systematic review and meta-analysis. Korean J Clin Pharm 2010; 20(3): 183-192
  4. Toeller M. Diet therapy of diabetes mellitus. Fortschr Med 1991; 109(2): 41-42, 45
  5. Koivisto VA. Insulin therapy in type II diabetes. Diabetes Care 1993; 16 Suppl 3: 29-39
  6. Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001; 286(10): 1218-1227 https://doi.org/10.1001/jama.286.10.1218
  7. Derosa G, Maffioli P. $\alpha$-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci 2012; 8(5): 899-906
  8. Standl E, Schnell O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diab Vasc Dis Res 2012; 9(3): 163-169 https://doi.org/10.1177/1479164112441524
  9. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 2009; 615(1-3): 252-256 https://doi.org/10.1016/j.ejphar.2009.05.017
  10. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23(5): 599-622 https://doi.org/10.1210/er.2001-0039
  11. Seghrouchni I, Drai J, Bannier E, Rivière J, Calmard P, Garcia I, Orgiazzi J, Revol A. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta 2002; 321(1-2): 89-96 https://doi.org/10.1016/S0009-8981(02)00099-2
  12. Kim BH, Son SM. Mechanism of developing diabetic vascular complication by oxidative stress. J Korean Endocr Soc 2006; 21(6): 448-459 https://doi.org/10.3803/jkes.2006.21.6.448
  13. Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ, Bamji SX, Clee SM, Johnson JD. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012; 16 (6): 723-737 https://doi.org/10.1016/j.cmet.2012.10.019
  14. Song HS, Park YH, Jung SH, Kim DP, Jung YH, Lee MK, Moon KY. Antioxidant activity of extracts from Smilax china root. J Korean Soc Food Sci Nutr 2006; 35(9): 1133-1138 https://doi.org/10.3746/jkfn.2006.35.9.1133
  15. Cha BC, Lee EH. Antioxidant activities of flavonoids from the leaves of Smilax china Linne. Korean J Pharmacogn 2007; 38(1): 31-36
  16. Choi SS, Cha BY, Iida K, Lee YS, Yonezawa T, Teruya T, Nagai K, Woo JT. Artepillin C, as a $PPAR{\gamma}$ ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biochem Pharmacol 2011; 81(7): 925-933 https://doi.org/10.1016/j.bcp.2011.01.002
  17. Yadav D, Chaudhary AA, Garg V, Anwar MF, Rahman MM, Jamil SS, Khan HA, Asif M. In vitro toxicity and antidiabetic activity of a newly developed polyherbal formulation (MAC-ST/001) in streptozotocin-induced diabetic Wistar rats. Protoplasma 2013; 250(3): 741-749 https://doi.org/10.1007/s00709-012-0458-7
  18. Kim JM, Baek JM, Kim HS, Choe M. Antioxidative and antiasthma effect of Morus bark water extracts. J Korean Soc Food Sci Nutr 2010; 39(9): 1263-1269 https://doi.org/10.3746/jkfn.2010.39.9.1263
  19. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 2000; 71(1-2): 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  20. Kim KH, Kim NY, Kim SH, Han IA, Yook HS. Study on antioxidant effects of fractional extracts from Ligularia stenocephala leaves. J Korean Soc Food Sci Nutr 2012; 41(9): 1220-1225 https://doi.org/10.3746/jkfn.2012.41.9.1220
  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26(9-10): 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  22. Jeong KY, Kim ML. Physiological activities of Ulmus pumila L. extracts. Korean J Food Preserv 2012; 19(1): 104-109 https://doi.org/10.11002/kjfp.2012.19.1.104
  23. Hue SM, Boyce AN, Somasundram C. Antioxidant activity, phenolic and flavonoid contents in the leaves of different varieties of sweet potato (Ipomoea batatas). Aust J Crop Sci 2012; 6(3): 375-380
  24. Ryu HW, Lee BW, Curtis-Long MJ, Jung S, Ryu YB, Lee WS, Park KH. Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. J Agric Food Chem 2010; 58(1): 202-208 https://doi.org/10.1021/jf903068k
  25. Jeong HJ, Lee SG, Lee EJ, Park WD, Kim JB, Kim HJ. Antioxidant activity and anti-hyperglycemic activity of medicinal herbal extracts according to extraction methods. Korean J Food Sci Technol 2010; 42(5): 571-577
  26. Lee JM, Park JH, Chu WM, Yoon YM, Park E, Park HR. Antioxidant activity and alpha-glucosidase inhibitory activity of stings of Gleditsia sinensis extracts. J Life Sci 2011; 21(1): 62-67 https://doi.org/10.5352/JLS.2011.21.1.62
  27. Kim MA, Son HU, Yoon EK, Choi YH, Lee SH. Comparison of anti-diabetic activities by extracts of grape cultivar. Korean J Food Preserv 2012; 19(3): 400-405 https://doi.org/10.11002/kjfp.2012.19.3.400
  28. Lee HJ, Park KY. Body weight, cardiovascular risk factors, and self-efficacy of diabetic control among obese type II diabetic patients. J Korean Acad Nurs 2005; 35(5): 787-797
  29. de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 2008; 54(6): 945-955 https://doi.org/10.1373/clinchem.2007.100156

Cited by

  1. water extract-treated HepG2 cells vol.11, pp.3, 2017, https://doi.org/10.4162/nrp.2017.11.3.180
  2. in Progesterone-Induced Obese Mice vol.2017, pp.1741-4288, 2017, https://doi.org/10.1155/2017/4317321
  3. Antidiabetic Potential of Medicinal Plants and Their Active Components vol.9, pp.10, 2013, https://doi.org/10.3390/biom9100551
  4. Inhibitory Effect of Jeju Tea Extracts and Vanadate on Postprandial Hyperglycemia and Hypertension, and In Vitro Study vol.52, pp.4, 2013, https://doi.org/10.15324/kjcls.2020.52.4.398