DOI QR코드

DOI QR Code

빠르게 안정화된 레이온직물의 특성에 미치는 초음파세척 및 화학전처리 영향

Effects of Ultrasonic Cleaning and Chemical Pre-treatment on the Characteristics of Fast-stabilized Rayon Fabrics

  • 투고 : 2013.09.13
  • 심사 : 2013.09.24
  • 발행 : 2013.09.30

초록

본 연구에서는 $350^{\circ}C$에서 4 min 이내로 빠르게 등온 안정화공정을 통해 얻어진 레이온직물의 화학조성, 물리적 특성, X-선 회절 패턴, 열안정성 그리고 직물 형상에 미치는 초음파세척 및 화학전처리의 영향을 조사하였다. 안정화공정 동안 레이온직물에서 발생하는 중량감소와 열수축을 줄이고 안정화반응을 촉진시키기 위하여 안정화공정 전에 레이온직물을 먼저 초음파 세척하고 $NH_4Cl$, $Na_3PO_4$, $H_3PO_4$$ZnCl_2$로 화학전처리 공정을 수행하였다. 결과는 초음파세척 및 화학전처리가 안정화된 레이온직물의 중량감소, 열수축, 미세구조 변화, 탄소함량, 열안정성, 및 직물 형상에 영향을 주었으며, 사용한 안정화시간과 화학전처리제의 종류에 의존하였다.

In the present study, stabilized rayon fabrics were prepared from fast isothermal stabilization processes, which were carried out within four minutes at $350^{\circ}C$. The effects of ultrasonic cleaning and chemical pre-treatment on the chemical composition, physical characteristics, X-ray diffraction pattern, thermal stability and shape of the stabilized rayon fabrics were investigated extensively. In order to reduce the weight loss and thermal shrinkage of rayon fabrics occurring during the stabilization process, ultrasonic cleaning was first conducted and then chemical pre-treatments using $NH_4Cl$, $Na_3PO_4$, $H_3PO_4$, and $ZnCl_2$ were performed, respectively. The results indicated that both ultrasonic cleaning and chemical pre-treatment influenced the weight loss, thermal shrinkage, microstructure, carbon content, thermal stability and fabric shape of stabilized rayon fabrics. Also the results depended on the fast-stabilization time and the type of chemical pre-treatment agents used.

키워드

참고문헌

  1. M. M. Tang and R. Bacon, Carbon, 2, 211 (1964). https://doi.org/10.1016/0008-6223(64)90035-1
  2. R. Bacon and M. M. Tang, Carbon, 2, 221 (1964). https://doi.org/10.1016/0008-6223(64)90036-3
  3. C. Cho, D. Cho, J. K. Park, and J. Y. Lee, J. Adhes. Interface, 14, 21 (2013). https://doi.org/10.17702/jai.2013.14.1.021
  4. S. B. Yoon, C. W. Cho, D. Cho, J. K. Park, and J. Y. Lee, Carbon Lett., 9, 308 (2008). https://doi.org/10.5714/CL.2008.9.4.308
  5. J. V. Duffy, J. Appl. Polym. Sci., 15, 715 (1971). https://doi.org/10.1002/app.1971.070150316
  6. W. K. Tang and W. K. Neill, J. Polym. Sci.: Part C, 6, 65 (1964).
  7. A. Broido and M. A. Nelson, Combust. Flame, 24, 263 (1975). https://doi.org/10.1016/0010-2180(75)90156-X
  8. F. Shafizadeh and A. G. W. Bradbury, J. Appl. Polym. Sci., 23, 1431 (1979). https://doi.org/10.1002/app.1979.070230513
  9. Y. Sekiguchi, J. S. Frye, and F. Shafizadeh, J. Appl. Polym. Sci., 28, 3513 (1983). https://doi.org/10.1002/app.1983.070281116
  10. S. B. Yoon, D. Cho, and J. K. Park, Polymer (Korea), 29, 211 (2005).
  11. C. W. Cho, D. Cho, J. K. Park, and J. Y. Lee, J. Adhes. Interface, 11, 15 (2010).
  12. A. E. Lipska and F. A. Wodley, J. Appl. Polym. Sci., 13, 851 (1969). https://doi.org/10.1002/app.1969.070130504
  13. A. Basch and M. Lewin, J. Polym. Sci.: Polym. Chem. Edi., 11, 3071 (1973). https://doi.org/10.1002/pol.1973.170111204
  14. K. Gurudatt and V. S. Tripathi, Carbon, 36, 1371 (1998). https://doi.org/10.1016/S0008-6223(98)00124-9
  15. Q.-L. Wu and D. Pan, J. Appl. Polym. Sci., 90, 754 (2003). https://doi.org/10.1002/app.12715