DOI QR코드

DOI QR Code

A Study on Friction-induced Surface Fracture Behaviors of Thermoplastic Polyurethane (TPU)/Rubber Blends

열가소성 폴리우레탄 (TPU)/고무 블렌드의 마찰에 의한 표면 파괴 거동

  • Received : 2013.08.02
  • Accepted : 2013.09.16
  • Published : 2013.09.30

Abstract

In this work, the thermoplastic polyurethane (TPU) was melt-blended with EPDM, NBR and BR to form TPU/Rubber blend films, their composition and friction-induced surface fracture relationship was investigated. TPU/EPDM and TPU/BR blends exhibited the improved friction-induced surface fracture, especially the effect of BR was excellent. With addition of more than 10 wt% BR, TPU/BR blends exhibited the improved friction-induced surface fracture. The increase of the soft segment with increasing BR content, which was confirmed by scanning electron microscopy (SEM) analysis enabled us to estimate the improved friction-induced surface fracture.

본 연구에서는 열가소성 폴리우레탄(TPU)과 EPDM, NBR 및 BR을 용융 블렌딩하여 TPU/Rubber 블렌드 필름을 제조하고 이들의 조성이 마찰시 표면 파괴와의 관계를 연구하였다. TPU/EPDM과 TPU/BR 블렌드의 마찰시 표면 파괴 특성이 개선되었으며 특히 BR이 우수하였다. 또한, TPU/BR 블렌드에서 BR의 함량이 10 wt% 이상 투입될 때 표면 파괴 및 마킹 특성이 개선되었다. Scanning electron microscopy (SEM) 분석으로부터 BR 함량이 증가할수록 연질상의 증가로 인한 표면 파괴 및 마킹 특성의 개선으로 추정할 수 있었다.

Keywords

References

  1. G. Holdend, E. T. Bishop, and N. R. Lege, J. Polym. Sci. C., 26, 37 (1969).
  2. D. J. Meier, J. Polym. Sci. C., 26, 81 (1969).
  3. P. S. Pillai, D. J. Livingston, and J. D. Strang, Rubber Chem. Technol., 45, 241 (1972). https://doi.org/10.5254/1.3544703
  4. K. C. Choi, E. K. Lee, S. Y. Choi, and S. J. Park, J. Korean Ind. Eng. Chem., 13, 87 (2002).
  5. C. Hepbure, In Polyurethane Elastomers, Applied Science, London (1982).
  6. Y. H. Lee, B. K. Kang, H. J. Yoo, J. S. Kim, Y. J. Jung, D. J. Lee, and H. D. Kim, Clean Tech., 15, 172 (2009).
  7. M. Folkes and P. S. Hope, In Polymer Blends and Alloys, Blackie Academic Press, New York (1992).
  8. P. Potschke, K. Wallheinke, H. Fritche, and H. Stutz, J. Appl. Polym. Sci., 64, 749 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<749::AID-APP14>3.0.CO;2-P
  9. P. Potschke, K. Wallheinke, H. Fritsche, and H. Stutz, J. Appl. Polym. Sci., 64, 749 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970425)64:4<749::AID-APP14>3.0.CO;2-P
  10. E. G. Bajsic, I. Smit, and M. Leskovac, J. Appl. Polym. Sci., 104, 3980 (2007). https://doi.org/10.1002/app.26222
  11. E. G. Bajsic, A. Pustak, I. Smit, and M. Leskovac, J. Appl. Polym. Sci., 117, 1378 (2010).
  12. Y. Di, M. Kang, Y. Zhao, S. Yan, and X. Wang, J. Appl. Polym. Sci., 99, 875 (2006). https://doi.org/10.1002/app.22809
  13. G. T. Lim, M. H. Ju, D.-H. Kim, K. C. Song, and S.-U. Kim, Elastomer, 36, 177 (2001).
  14. X. Wang and X. Luo, Eur. Polym. J., 40, 2391 (2004). https://doi.org/10.1016/j.eurpolymj.2004.06.008
  15. L. Wu, X. Luo, and X. Wang, J. Appl. Polym. Sci., 102, 5472 (2006). https://doi.org/10.1002/app.25171
  16. J. Tan, Y. M. Ding, X. T. He, Y. Liu, Y. An, and W. M. Yang, J. Appl. Polym. Sci., 110, 1851 (2008). https://doi.org/10.1002/app.28756

Cited by

  1. A Study on Friction-induced Surface Fracture Behaviors of Carboxylic Acid Modified Styrenic Thermoplastic Elastomer as Additives vol.16, pp.3, 2015, https://doi.org/10.17702/jai.2015.16.3.95
  2. Experimental Study on the Behavior of Polyurethane Springs for Compression Members vol.11, pp.21, 2021, https://doi.org/10.3390/app112110223