DOI QR코드

DOI QR Code

Linear Stability Analysis of Cellular Counterflow Diffusion Flames with Radiation Heat Loss

복사 열손실을 받는 셀모양 대향류 확산화염의 선형 안정성 해석

  • 이수룡 (서울과학기술대학교 기계자동차공학과)
  • Received : 2013.04.22
  • Accepted : 2013.06.08
  • Published : 2013.06.28

Abstract

Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

Keywords

References

  1. Sivashinsky, G. I., "Diffusional-Thermal Instability in Cellular Flames", Combustion Science and Technology, Vol. 15, 1977, pp. 137-146. https://doi.org/10.1080/00102207708946779
  2. Joulin, G., Clavin, P., "Linear Stability Analysis of Non-adiabatic Flames: Diffusional-Thermal Model", Combustion and Flame, Vol. 35, 1979, pp. 139-153. https://doi.org/10.1016/0010-2180(79)90018-X
  3. Chen, R., Mitchell, G. B. and Ronney, P.D., "Diffusive- Thermal Instability and Flame Extinction in Non-Premixed Combustion", Proceedings of the Combustion Institute, Vol. 24, 1992, pp. 213-221. https://doi.org/10.1016/S0082-0784(06)80030-5
  4. Kim, J. S., Williams, F. A., and Ronney, P. D., "Diffusional-Thermal Instability in Diffusion Flames", Journal of Fluid mechanics, Vol. 327, 1996, pp. 273-301. https://doi.org/10.1017/S0022112096008543
  5. Sohn, C. H., Kim J. S., Chung, S. H. and Maruta, K., "Nonlinear Evolution of Diffusion Flame Oscillations Triggered by Radiative Heat Loss", Combustion and Flame, Vol. 123, 2000, pp. 95-106. https://doi.org/10.1016/S0010-2180(00)00148-6
  6. Miklavcic, M., Moore, A. B., and Wichman I. S., "Oscillations and Island Evolution in Radiating Diffusion Flames", Combust. Theory Model., Vol. 9, 2005, pp.403-416. https://doi.org/10.1080/13647830500293099
  7. Lee, S. R., "Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss", Trans. of the KSME(B), Vol. 36, No. 8, 2012, pp.857-864.
  8. Nanduria, J. R., Sung, C. J., and T'ien, J. S., "Structure and Dynamic Response of Radiative Diffusion Flames", Combustion Theory and Modeling, Vol. 9, 2005, pp.515-548. https://doi.org/10.1080/13647830500277373
  9. Han, B., Ibarreta, A. I., Sung, C. J., Tien, J. S., "Experimental Low-Stretch Gaseous Diffusion Flames in Buoyancy-Induced Flow Fields", Proceedings of the Combustion Institute, Vol. 30, 2005, pp.527-535 https://doi.org/10.1016/j.proci.2004.08.019
  10. Kim, J. S., and Lee, S. R., "Diffusional-Thermal Instability in Strained Diffusion Flames with Unequal Lewis Numbers", Combust. Theory Model., Vol. 3, 1999, pp. 123-146. https://doi.org/10.1088/1364-7830/3/1/007
  11. Law, C. K., Combustion Physics, Cambridge University Press, New York, 2006.
  12. Metzener P. and Matalon M., "Diffusive -thermal instabilities of diffusion flames: onset of cells and oscillations", Combustion Theory and Modeling, Vol. 10, 2006, pp.701-725. https://doi.org/10.1080/13647830600719894
  13. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., 1992, Numerical Recipes, Cambridge University Press, New York, pp.476-486.

Cited by

  1. Numerical Analysis of Characteristics of Cellular Counterflow Diffusion Flames near Radiative Extinction Limit vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-B.2014.38.6.493