DOI QR코드

DOI QR Code

A Biomechanical Comparison of Intralaminar C7 Screw Constructs with and without Offset Connector Used for C6-7 Cervical Spine Immobilization : A Finite Element Study

  • Qasim, Muhammad (Department of Orthopedic Surgery, Rush University Medical Center) ;
  • Hong, Jae Taek (Department of Orthopedic Surgery, Rush University Medical Center) ;
  • Natarajan, Raghu N. (Department of Orthopedic Surgery, Rush University Medical Center) ;
  • An, Howard S. (Department of Orthopedic Surgery, Rush University Medical Center)
  • Received : 2013.01.04
  • Accepted : 2013.06.19
  • Published : 2013.06.28

Abstract

Objective : The offset connector can allow medial and lateral variability and facilitate intralaminar screw incorporation into the construct. The aim of this study was to compare the biomechanical characteristics of C7 intralaminar screw constructs with and without offset connector using a three dimensional finite element model of a C6-7 cervical spine segment. Methods : Finite element models representing C7 intralaminar screw constructs with and without the offset connector were developed. Range of motion (ROM) and maximum von Mises stresses in the vertebra for the two techniques were compared under pure moments in flexion, extension, lateral bending and axial rotation. Results : ROM for intralaminar screw construct with offset connector was less than the construct without the offset connector in the three principal directions. The maximum von Misses stress was observed in the C7 vertebra around the pedicle in both constructs. Maximum von Mises stress in the construct without offset connector was found to be 12-30% higher than the corresponding stresses in the construct with offset connector in the three principal directions. Conclusion : This study demonstrated that the intralaminar screw fixation with offset connector is better than the construct without offset connector in terms of biomechanical stability. Construct with the offset connector reduces the ROM of C6-7 segment more significantly compared to the construct without the offset connector and causes lower stresses around the C7 pedicle-vertebral body complex.

Keywords

References

  1. Abumi K, Ito M, Kaneda K : Surgical treatment of cervical destructive spondyloarthropathy (DSA). Spine (Phila Pa 1976) 25 : 2899-2905, 2000 https://doi.org/10.1097/00007632-200011150-00011
  2. Arand M, Kinzl L, Gebhard F : [Sources of error and risks in CT based navigation]. Orthopade 31 : 378-384, 2002 https://doi.org/10.1007/s00132-001-0279-4
  3. Argoubi M, Shirazi-Adl A : Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 29 : 1331-1339, 1996 https://doi.org/10.1016/0021-9290(96)00035-8
  4. Barrey C, Cotton F, Jund J, Mertens P, Perrin G : Transpedicular screwing of the seventh cervical vertebra : anatomical considerations and surgical technique. Surg Radiol Anat 25 : 354-360, 2003 https://doi.org/10.1007/s00276-003-0163-5
  5. Bozkus H, Ames CP, Chamberlain RH, Nottmeier EW, Sonntag VK, Papadopoulos SM, et al. : Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine (Phila Pa 1976) 30 : 915-922, 2005 https://doi.org/10.1097/01.brs.0000158949.37281.d7
  6. Clausen JD, Goel VK, Traynelis VC, Scifert J : Uncinate processes and Luschka joints influence the biomechanics of the cervical spine : quantification using a finite element model of the C5-C6 segment. J Orthop Res 15 : 342-347, 1997 https://doi.org/10.1002/jor.1100150305
  7. Ebraheim NA, Tremains M, Xu R, Yeasting RA : Anatomic study of the cervicothoracic spinal nerves and their relation to the pedicles. Am J Orthop (Belle Mead NJ) 29 : 779-781, 2000
  8. Holly LT, Foley KT : Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine (Phila Pa 1976) 31 : 536-540; discussion 541, 2006 https://doi.org/10.1097/01.brs.0000201297.83920.a1
  9. Hong JT, Sung JH, Son BC, Lee SW, Park CK : Significance of laminar screw fixation in the subaxial cervical spine. Spine (Phila Pa 1976) 33 : 1739-1743, 2008 https://doi.org/10.1097/BRS.0b013e31817d2aa2
  10. Hong JT, Tomoyuki T, Udayakumar R, Espinoza Orías AA, Inoue N, An HS : Biomechanical comparison of three different types of C7 fixation techniques. Spine (Phila Pa 1976) 36 : 393-398, 2011 https://doi.org/10.1097/BRS.0b013e31820b7e2f
  11. Hong JT, Yi JS, Kim JT, Ji C, Ryu KS, Park CK : Clinical and radiologic outcome of laminar screw at C2 and C7 for posterior instrumentation--review of 25 cases and comparison of C2 and C7 intralaminar screw fixation. World Neurosurg 73 : 112-118; discussion e15, 2010 https://doi.org/10.1016/j.surneu.2009.06.010
  12. Hussain M, Natarajan RN, Chaudhary G, An HS, Andersson GB : Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics : a poroelastic C5-C6 finite element model study. Med Eng Phys 33 : 438-445, 2011 https://doi.org/10.1016/j.medengphy.2010.11.011
  13. Jang SH, Hong JT, Kim IS, Yeo IS, Son BC, Lee SW : C7 posterior fixation using intralaminar screws : early clinical and radiographic outcome. J Korean Neurosurg Soc 48 : 129-133, 2010 https://doi.org/10.3340/jkns.2010.48.2.129
  14. Johnston TL, Karaikovic EE, Lautenschlager EP, Marcu D : Cervical pedicle screws vs. lateral mass screws : uniplanar fatigue analysis and residual pullout strengths. Spine J 6 : 667-672, 2006 https://doi.org/10.1016/j.spinee.2006.03.019
  15. Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K : Cervical pedicle screw insertion : assessment of safety and accuracy with computer-assisted image guidance. J Spinal Disord 13 : 218-224, 2000 https://doi.org/10.1097/00002517-200006000-00004
  16. Karaikovic EE, Yingsakmongkol W, Gaines RW Jr : Accuracy of cervical pedicle screw placement using the funnel technique. Spine (Phila Pa 1976) 26 : 2456-2462, 2001 https://doi.org/10.1097/00007632-200111150-00012
  17. Kim HS, Heller JG, Hudgins PA, Fountain JA : The accuracy of computed tomography in assessing cervical pedicle screw placement. Spine (Phila Pa 1976) 28 : 2441-2446, 2003 https://doi.org/10.1097/01.BRS.0000090830.94641.AE
  18. Kothe R, Rüther W, Schneider E, Linke B : Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine (Phila Pa 1976) 29 : 1869-1875, 2004 https://doi.org/10.1097/01.brs.0000137287.67388.0b
  19. Kretzer RM, Sciubba DM, Bagley CA, Wolinsky JP, Gokaslan ZL, Garonzik IM : Translaminar screw fixation in the upper thoracic spine. J Neurosurg Spine 5 : 527-533, 2006 https://doi.org/10.3171/spi.2006.5.6.527
  20. Kumaresan S, Yoganandan N, Pintar FA : Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech 31 : 371-376, 1998 https://doi.org/10.1016/S0021-9290(98)00008-6
  21. Kumaresan S, Yoganandan N, Pintar FA, Macias M, Cusick JF : Morphology of young and old cervical spine intervertebral disc tissues. Biomed Sci Instrum 36 : 141-146, 2000
  22. Lee CK, Kim YE, Lee CS, Hong YM, Jung JM, Goel VK : Impact response of the intervertebral disc in a finite-element model. Spine (Phila Pa 1976) 25 : 2431-2439, 2000 https://doi.org/10.1097/00007632-200010010-00003
  23. Mazel C, Hoffmann E, Antonietti P, Grunenwald D, Henry M, Williams J : Posterior cervicothoracic instrumentation in spine tumors. Spine (Phila Pa 1976) 29 : 1246-1253, 2004 https://doi.org/10.1097/00007632-200406010-00015
  24. Miller RM, Ebraheim NA, Xu R, Yeasting RA : Anatomic consideration of transpedicular screw placement in the cervical spine. An analysis of two approaches. Spine (Phila Pa 1976) 21 : 2317-2322, 1996 https://doi.org/10.1097/00007632-199610150-00003
  25. Nissan M, Gilad I : The cervical and lumbar vertebrae--an anthropometric model. Eng Med 13 : 111-114, 1984 https://doi.org/10.1243/EMED_JOUR_1984_013_030_02
  26. Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K. Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. Spine (Phila Pa 1976) 16 : 861-869, 1991 https://doi.org/10.1097/00007632-199108000-00001
  27. Panjabi MM, Oxland TR, Parks EH : Quantitative anatomy of cervical spine ligaments. Part II. Middle and lower cervical spine. J Spinal Disord 4 : 277-285, 1991 https://doi.org/10.1097/00002517-199109000-00004
  28. Papagelopoulos PJ, Currier BL, Neale PG, Hokari Y, Berglund LJ, Larson DR, et al. : Biomechanical evaluation of posterior screw fixation in cadaveric cervical spines. Clin Orthop Relat Res : 13-24, 2003
  29. Rath SA, Moszko S, Schaffner PM, Cantone G, Braun V, Richter HP, et al. : Accuracy of pedicle screw insertion in the cervical spine for internal fixation using frameless stereotactic guidance. J Neurosurg Spine 8 : 237-245, 2008 https://doi.org/10.3171/SPI/2008/8/3/237
  30. Reinhold M, Magerl F, Rieger M, Blauth M : Cervical pedicle screw placement : feasibility and accuracy of two new insertion techniques based on morphometric data. Eur Spine J 16 : 47-56, 2007 https://doi.org/10.1007/s00586-006-0104-1
  31. Rhee JM, Kraiwattanapong C, Hutton WC : A comparison of pedicle and lateral mass screw construct stiffnesses at the cervicothoracic junction : a biomechanical study. Spine (Phila Pa 1976) 30 : E636-E640, 2005 https://doi.org/10.1097/01.brs.0000184750.80067.a1
  32. Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M : Effect of constrained posterior screw and rod systems for primary stability : biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model. Eur Spine J 14 : 372-380, 2005 https://doi.org/10.1007/s00586-004-0763-8
  33. Skrzypiec DM, Pollintine P, Przybyla A, Dolan P, Adams MA : The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry. Eur Spine J 16 : 1701-1709, 2007 https://doi.org/10.1007/s00586-007-0458-z
  34. Teo EC, Ng HW : Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method. Med Eng Phys 23 : 155-164, 2001 https://doi.org/10.1016/S1350-4533(01)00036-4
  35. Vasavada AN, Danaraj J, Siegmund GP : Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J Biomech 41 : 114-121, 2008 https://doi.org/10.1016/j.jbiomech.2007.07.007
  36. Wang MY : Cervical crossing laminar screws : early clinical results and complications. Neurosurgery 61 (5 Suppl 2) : 311-315; discussion 315-316, 2007 https://doi.org/10.1227/01.neu.0000303987.49870.7b
  37. Wright NM : Posterior C2 fixation using bilateral, crossing C2 laminar screws : case series and technical note. J Spinal Disord Tech 17 : 158-162, 2004 https://doi.org/10.1097/00024720-200404000-00014
  38. Xu R, Kang A, Ebraheim NA, Yeasting RA : Anatomic relation between the cervical pedicle and the adjacent neural structures. Spine (Phila Pa 1976) 24 : 451-454, 1999 https://doi.org/10.1097/00007632-199903010-00008
  39. Yoganandan N, Kumaresan S, Pintar FA : Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng 122 : 623-629, 2000 https://doi.org/10.1115/1.1322034

Cited by

  1. Biomechanical Analysis of a Long-Segment Fusion in a Lumbar Spine-A Finite Element Model Study vol.140, pp.9, 2018, https://doi.org/10.1115/1.4039989