DOI QR코드

DOI QR Code

Fitness Evaluation of CMORPH Satellite-derived Precipitation Data in KOREA

한반도의 CMORPH 위성강수자료 정확도 평가

  • Kim, Joo Hun (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Kim, Kyung Tak (Water Resources Research Division, Korea Institute of Construction Technology) ;
  • Choi, Youn Seok (Water Resources Research Division, Korea Institute of Construction Technology)
  • 김주훈 (한국건설기술연구원 수자원연구실) ;
  • 김경탁 (한국건설기술연구원 수자원연구실) ;
  • 최윤석 (한국건설기술연구원 수자원연구실)
  • Received : 2013.04.16
  • Accepted : 2013.05.27
  • Published : 2013.08.31

Abstract

This study analyzes the application possibilities of the satellite-derived precipitation to water resources field. Precipitation observed by ground gauges and climate prediction center morphing method (CMORPH) which is global scale precipitation estimated by National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) using satellite images are compared to evaluate the quality of precipitation estimated from satellite images. Precipitation data from 10-years (2002 to 2011) is applied. The correlation coefficient of 1-day cumulative precipitation is 0.87, but the 1-year precipitation is 4 to 5 times different. The variability of root mean square error (RMSE) become smaller as temporal resolution lower. On the results for the watershed scale, the precipitation from gauges and CMORPH shows better agreement as the watershed become larger.

본 연구에서는 NOAA CPC에서 제공하고 있는 인공위성을 이용한 광역적 강수량 추정 자료인 CMORPH와 지상 관측자료와의 비교를 통해 위성으로부터 유도된 강수자료의 정확도 및 활용 가능성 등 수자원 분야 이용 가능성을 분석하는 것을 목적으로 하였다. 2002-2011년의 10년간의 자료를 분석한 결과 1일 누가강수의 상관계수가 평균 0.87 정도로 분석되었으나, 연간 총강수량은 약 4~5배 정도 차이가 나는 것으로 분석되었다. 또한 시간해상도가 커짐에 따라 RMSE의 변동성이 작아지는 것으로 분석되었다. 유역 규모에 따른 분석에서 유역 규모가 커질수록 강수자료의 정확도에 대한 평가가 향상되는 것으로 분석되었다.

Keywords

References

  1. Alenmseged Tamiru Haile, Emad Habib, Tom Rientjes (2012). Evaluation of the Climate Prediction Center (CPC) morphing technique (CMORPH) rainfall product on hourly time scales over the source of the Blue Nile River. Hydrol. Process. 27, 1829-1839(2013) https://doi.org/10.1002/hyp.9330
  2. Apip, Kaoru Takara, Yosuke Yamashiki, Kyoji Sassa, Agung Bagiawan, Ibrahim Hiroshi Fukuoka (2010). A distributed hydrological-geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslide (2010) 7:237-258. DOI 10.1007/ s10346-010-0214-z
  3. Augusto J. Pereira Filho, Richard E. Carbone, John E. Janowiak, Phillip Arkin, Robert Joyce, Ricardo Hallak, and Camila G.M. Ramos (2010). Satellite Rainfall estimates over South America - Possible Applicability to the Water Management of Large Watersheds. J. of The American Water Resources Assocuation 46(2): 344-360. https://doi.org/10.1111/j.1752-1688.2009.00406.x
  4. Korea Institute of Construction Technology(JICT), Korea Aerospace Research Institute(KARI) (2012). Satellite Information Application Support Operation : A Study of River Information Production and Application using Satellite Images(KOR).
  5. Lee Giha (2012). Policy challenges for the water industry development and activation, Magazine of Korea Water Resources Association (10):8-12(KOR).
  6. National Aeronautics and Space Administration(NASA) (2011). Tropical Rainfall Measureing Mission - Senior Review Proposal 2011.
  7. National Institute of Meteorological Research(NIMR), Korea Aerospace Research Institute(KARI) (2009). "Development of Meterological Data Processing System of Communication Ocean and Meteorological Satellite" Final report(KOR).
  8. Sohn, Byungju,Jaecheol Nam, Seonki Park, Myunghwan Ahn, Jungmoon Yoo,Heesang Lee, Dongeon Chang, Changhoi Ho, Deghyo Bae, Seongjun Kim,Hyunjong Oh, Seongchan Park and Juhong Kim (2005). Proposing Research and Development Activities for Utilizing the Global Precipitation Measurement (GPM). J. of Atmosphere, KMS, 15(1):47-57(KOR).
  9. Tomoo Ushio and Misako Kachi (2010). Kalman Filtering Applications for Global Satellite Mapping of Precipitation(GSMaP), Satellite Rainfall Applications for Surface Hydrology, Springer, pp. 105-123.
  10. Xie, Pingping, Soohyun Yoo, Rovert Joyce, and Yelena Yarosh (2011). Bias-Corrected CMORPH : A 13-Year Analysis of High-Resolution Global Precipitaton. NOAA's Climate Prediction Center(presentation) ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/ REF/EGU_1104_Xie_bias-CMORPH.pdf
  11. http://en.wikipedia.org/wiki/Morph_target_animation
  12. http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_des cription.html

Cited by

  1. Runoff Estimation Using Rainfalls Derived from Multi-Satellite Images vol.17, pp.1, 2014, https://doi.org/10.11108/kagis.2014.17.1.107
  2. Flow Estimation Using Rainfalls Derived from Multiple Satellite Images in North Korea vol.18, pp.4, 2015, https://doi.org/10.11108/kagis.2015.18.4.031