DOI QR코드

DOI QR Code

Effect of Puromycin Aminonucleoside on Podocyte P-Cadherin

Puromycin aminonucleoside의 사구체 족세포 P-cadherin에 대한 영향

  • Ha, Tae-Sun (Department of Pediatrics, College of Medicine, Chungbuk National University)
  • 하태선 (충북대학교 의과대학 소아과학교실)
  • Received : 2013.09.13
  • Accepted : 2013.10.07
  • Published : 2013.10.31

Abstract

Purpose: To test whether the expression of P-cadherin, a component of slit diaphragms between podocyte foot processes, would be altered by puromycin aminonucleoside (PAN) in a cultured podocyte in vitro. Methods: Rat glomerular epithelial cells (GEpC) were cultured with various concentrations of PAN. The distribution of P-cadherin was examined with a confocal microscope. Western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to measure the change in P-cadherin expression. Results: This study found that P-cadherin was concentrated in the inner and peripheral cytoplasm with high concentrations of PAN under immunofluorescence views. Western blotting of GEpC revealed that PAN induced a decrease of P-cadherin in dose- and time-dependent manners. A high dose ($50{\mu}g/mL$) of PAN decreased P-cadherin expression by 21.9% at 24 h (P <0.05) and 31.9% at 48 h (P <0.01) compared to those without PAN. In RT-PCR, high concentrations ($50{\mu}g/mL$) of PAN also decreased P-cadherin mRNA expression, similar to protein suppression, by 23.5% at 48 h (P <0.05). Conclusion: Podocytes exposed to PAN in vitro concentrated P-cadherin internally, and reduced P-cadherin mRNA and protein expression. This could explain the development of proteinuria in experimental PAN-induced nephropathy.

목적: 단백뇨 질환의 실험모델인 puromycin aminonucleoside (PAN)에서 관찰할 수 있는 족세포의 병리학적 이상에 있어서 P-cadherin의 변화를 생체 외 족세포 배양실험을 통하여 알아보고자 하였다. 방법: PAN에 의한 족세포의 P-cadherin의 변화를 생체 외 배양실험을 통해 알아보고자 백서 사구체 상피세포(GEpC)를 배양하여 다양한 농도의 PAN을 투여하여 confocal 현미경을 통하여 P-cadherin의 분포를 관찰하였고, Western blotting 과 RT-PCR을 사용하여 P-cadherin 발현의 변화를 관찰하였다. 결과: 외곽세포질에 분포하는 P-cadherin은 단일세포 혹은 응집환경에서 PAN의 농도가 올라갈수록 내부로 응집되는 현상를 볼 수 있었다. Western 분석에서, P-cadherin 단백양은 PAN에 농도-의존적으로, 특히, 고농도인 50 mg/mL에서 24시간과 48시간이 노출 조건에서 각각 21.9% (P< 0.05)와 31.9% (P<0.01)의 의미 있는 감소소견을 보였다. RT-PCR에서도 48시간에서 50 mg/mL PAN을 첨가한 조건에서 23.5%의 의미 있는 감소를 보였다(P<0.05). 결론: PAN은 족세포에서 P-cadherin을 세포막으로부터 내부로의 응집을 유발하고, P-cadherin mRNA의 발현 감소와 단백수준에서 양의 감소를 초래함으로서, 단백뇨의 발생에 기여할 것이라 사료된다.

Keywords

References

  1. Churg J, Habib R, White RH. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet. 1970;760:1299-302.
  2. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003;362:629-39. https://doi.org/10.1016/S0140-6736(03)14184-0
  3. Sinha A, Bagga A. Nephrotic syndrome. Indian J Pediatr 2012; 79:1045-55. https://doi.org/10.1007/s12098-012-0776-y
  4. Ryan GB, Karnovsky MJ. An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephrosis. Kidney Int 1975:8:219-32. https://doi.org/10.1038/ki.1975.105
  5. Caulfield JP, Reid JJ, Farquhar MG. Alterations of the glomerular epithelium in acute aminonucleoside nephrosis: Evidence of formation of occluding junctions and epithelial cell detachment. Lab Invest 1976:34:43-59.
  6. Messina A, Davies DJ, Dillane PC, Ryan GB. Glomerular epithelial abnormalities associated with the onset of proteinuria in aminonucleoside nephrosis. Am J Pathol 1987:126:220-29.
  7. Caufield JP, Farquhar MG. Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest 1978:39:505-10.
  8. Ricardo SD, Bertram JF, Ryan GB. Reactive oxygen species in aminonucleoside nephrosis: In vitro studies. Kidney Int 1994: 45:1057-69. https://doi.org/10.1038/ki.1994.142
  9. Marshall CB, Pippin JW, Krofft RD, Shankland SJ. Puromycin aminonucleoside induces oxidant-dependent DNA damage in podocytes in vitro and in vivo. Kidney Int 2006;70:1962-73.
  10. Karnovsky MJ, Ainsworth SK: The structural basis of glomerular filtration. Adv Nephrol Necker Hosp 1972;2:35-60.
  11. Remuzzi A, Remuzzi G: Glomerular perm-selective function. Kidney Int 1994;45:398-402. https://doi.org/10.1038/ki.1994.51
  12. Rodewald R, Karnovsky MJ: Porous substructure of the glomerular silt diaphragm in the rat and mouse. J Cell Biol 1974; 60:423-33. https://doi.org/10.1083/jcb.60.2.423
  13. Reiser J, Kriz W, Kretzler M, Mundel P. The glomerular silt diaphragm is a modified adherens junction. J Am Soc Nephrol 2000;11:1-8 .
  14. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol 2002;13:3005-15. https://doi.org/10.1097/01.ASN.0000039661.06947.FD
  15. Haraldsson B, Nyström J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 2008;88:451-87. https://doi.org/10.1152/physrev.00055.2006
  16. Ha TS. Roles of adaptor proteins in podocyte biology. World J Nephrol 2013:2:1-10. https://doi.org/10.5527/wjn.v2.i1.1
  17. Ha T-S, Park KB. Pathophysiology of proteinuria. Korean J Pediatr 2004;47(Suppl 4):877-85.
  18. Shimoyama Y, Hirohashi S, Hirano S, Noguchi M, Shimosato Y, Takeichi M, et al. Cadherin cell adhesion molecules in human epithelial tissues and carcinomas. Cancer Res 1989; 49:2128-33.
  19. Kreisberg JI, Hoover RL, Karnovsky MJ. Isolation and characterization of rat glomerular epithelial cells in vitro. Kidney Int 1978;14:21-30. https://doi.org/10.1038/ki.1978.86
  20. Choi JY, Ahn EM, Park HY, Shin JI, Ha TS. The change of podocyte ${\beta}-catenin$ by puromycin aminonucleoside. J Korean Soc Pediatr Nephrol 2011;15:138-45. https://doi.org/10.3339/jkspn.2011.15.2.138
  21. Grunwald GB. The structural and functional analysis of cadherin calcium-dependent cell adhesion molecules. Curr Opin Cell Biol 1993;5:797-805. https://doi.org/10.1016/0955-0674(93)90028-O
  22. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumour cells reveals an invasion suppressor role. Cell 1991;66:107-19. https://doi.org/10.1016/0092-8674(91)90143-M
  23. Geiger B, Ayalon O. Cadherins. Annu Rev Cell Biol 1992;8: 307-32. https://doi.org/10.1146/annurev.cb.08.110192.001515
  24. Goodwin M, Yap AS. Classical cadherin adhesion molecules: coordinating cell adhesion, signaling and the cytoskeleton J Mol Histol 2004;35:839-44. https://doi.org/10.1007/s10735-004-1833-2
  25. Yaoita E, Sato N, Yoshida Y, Nameta M, Yamamoto T. Cadherin and catenin staining in podocytes in development and puromycin aminonucleoside nephrosis Nephrol Dial Transplant. 2002;17(Suppl 9):16-9.
  26. Goto S, Yaoita E, Matsunami H, Kondo D, Yamamoto T, Kawasaki K, et al. Involvement of R-cadherin in the early stage of glomerulogenesis. J Am Soc Nephrol. 1998;9:1234-41.
  27. Nakopoulou L, Lazaris ACh, Boletis IN, Michail S, Giannopoulou I, Zeis PM, et al. Evaluation of E-cadherin/catenin complex in primary and secondary glomerulonephritis. Am J Kidney Dis 2002;39:469-74. https://doi.org/10.1053/ajkd.2002.31390
  28. Singh AK, Mo W, Dunea G, Arruda JA. Effect of glycated proteins on the matrix of glomerular epithelial cells. J Am Soc Nephrol 1998;9:802-10.
  29. Bains R, Furness PN, Critchley DR. A quantitative immunofluorescence study of glomerular cell adhesion proteins in proteinuric states. J Pathol 1997;183:272-80. https://doi.org/10.1002/(SICI)1096-9896(199711)183:3<272::AID-PATH914>3.0.CO;2-U
  30. Ruotsalainen V, Patrakka J, Tissari P, Reponen P, Hess M, Kestila M, et al. Role of nephrin in cell junction formation in human nephrogenesis. Am J Pathol 2000;157:1905-16. https://doi.org/10.1016/S0002-9440(10)64829-8
  31. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, et al. Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol 1997; 139:1025-32. https://doi.org/10.1083/jcb.139.4.1025
  32. Xu ZG, Ryu DR, Yoo TH, Jung DS, Kim JJ, Kim HJ, et al. P-Cadherin is decreased in diabetic glomeruli and in glucose-stimulated podocytes in vivo and in vitro studies. Nephrol Dial Transplant 2005;20:524-31. https://doi.org/10.1093/ndt/gfh642
  33. Ha TS, Koo HH, Lee HS, Yoon OJ. High glucose and advanced glycosylation endproducts (AGE) modulate the P-cadherin expression in glomerular epithelial cells (GEpC). J Korean Soc Pediatr Nephrol 2005;9:119-27.
  34. Otero K, Martinez F, Beltran A, Gonzalez D, Herrera B, Quintero G, et al. Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 2001;359:567-74. https://doi.org/10.1042/0264-6021:3590567
  35. Luimula P, Sandström N, Novikov D, Holthöfer H. Podocyteassociated molecules in puromycin aminonucleoside nephrosis of the rat. Lab Invest 2002;82:713-8. https://doi.org/10.1097/01.LAB.0000017168.26718.16
  36. Lee JH, Ha TS. Effects of puromycin aminonucleoside on the cytoskeletal changes of glomerular epithelial cells. Korean J Pediatr 2008;51:54-61. https://doi.org/10.3345/kjp.2008.51.1.54