DOI QR코드

DOI QR Code

Comparison of IMRT and VMAT Techniques in Spine Stereotactic Radiosurgery with International Spine Radiosurgery Consortium Consensus Guidelines

International Spine Radiosurgery Consortium Consensus Guidelines에 따른 Spine Stereotactic Radiosurgery에서 IMRT와 VMAT의 비교연구

  • Oh, Se An (Department of Radiation Oncology, Yeungnam University Medical Center) ;
  • Kang, Min Kyu (Department of Radiation Oncology, Yeungnam University College of Medicine) ;
  • Kim, Sung Kyu (Department of Radiation Oncology, Yeungnam University College of Medicine) ;
  • Yea, Ji Woon (Department of Radiation Oncology, Yeungnam University College of Medicine)
  • 오세안 (영남대학교병원 방사선종양학과) ;
  • 강민규 (영남대학교 의과대학 방사선종양학교실) ;
  • 김성규 (영남대학교 의과대학 방사선종양학교실) ;
  • 예지원 (영남대학교 의과대학 방사선종양학교실)
  • Received : 2013.08.13
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

Stereotactic body radiation therapy (SBRT) is increasingly used to treat spinal metastases. To achieve the highest steep dose gradients and conformal dose distributions of target tumors, intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) techniques are essential to spine radiosurgery. The purpose of the study was to qualitatively compare IMRT and VMAT techniques with International Spine Radiosurgery Consortium (ISRC) contoured consensus guidelines for target volume definition. Planning target volume (PTV) was categorized as TB, $T_{BPT}$ and $T_{ST}$ depending on sectors involved; $T_B$ (vertebral body only), $T_{BPT}$ (vertebral body+pedicle+transverse process), and $T_{ST}$ (spinous process+transverse process). Three patients treated for spinal tumor in the cervical, thoracic, and lumbar region were selected. Eacg tumor was contoured by the definition from the ISRC guideline. Maximum spinal cord dose were 12.46 Gy, 12.17 Gy and 11.36 Gy for $T_B$, $T_{BPT}$ and $T_{ST}$ sites, and 11.81 Gy, 12.19 Gy and 11.99 Gy for the IMRT, RA1 and RA2 techniques, respectively. Average fall-off dose distance from 90% to 50% isodose line for $T_B$, $T_{BPT}$, and $T_{ST}$ sites were 3.5 mm, 3.3 mm and 3.9 mm and 3.7 mm, 3.7 mm and 3.3 mm for the IMRT, RA1 and RA2 techniques, respectively. For the most complicated target $T_{BPT}$ sites in the cervical, thoracic and lumbar regions, the conformity index of the IMRT, RA1 and RA2 is 0.621, 0.761 and 0.817 and 0.755, 0.796 and 0.824 for rDHI. Both IMRT and VMAT techniques delivered high conformal dose distributions in spine stereotactic radiosurgery. However, if the target volume includes the vertebral body, pedicle, and transverse process, IMRT planning resulted in insufficient conformity index, compared to VMAT planning. Nevertheless, IMRT technique was more effective in reducing the maximum spinal cord dose compared to RA1 and RA2 techniques at most sites.

정위적 체부 방사선치료(Stereotactic Body Radiation Therapy, SBRT)는 척추 전이암을 치료하는데 있어서 점점 증가하고 있다. 표적 종양의 급격한 선량 변화와 등선량 분포를 얻기 위해서, 세기조절방사선치료(Intensity-modulated radiation therapy, IMRT)와 체적변조회전치료(Volumetric-modulated arc therapy, VMAT)는 척추 방사선수술에 있어서 필수적인 치료기법이다. 이 연구의 목적은 표적 종양을 위한 International Spine Radiosurgery (ISRC) Consortium의 consensus guideline으로 그려진 표적에 있어서 IMRT와 VMAT의 치료기법을 질적으로 비교하고자 한다. 경부, 흉부, 요추 부위에 종양치료를 받은 3명의 환자를 선택 하였다. 표적 종양은 ISRC의 consensus guideline을 바탕으로 정의 하였다. $T_B$는 vertebral body만 포함하였고, $T_{BPT}$는 vertebral body, pedicle, transverse process를 포함하였다. 그리고 $T_{ST}$는 spinous process와 transverse process를 포함하여 그렸다. Maximum spinal cord선량은 $T_B$, $T_{BPT}$, $T_{ST}$에서 각각 12.46 Gy, 12.17 Gy, 11.36 Gy였고, IMRT, RA1, RA2에서 각각 11.81 Gy, 12.19 Gy, 11.99 Gy였다. 평균 감소(90%~50%) 선량 거리 (mm)는 $T_B$, $T_{BPT}$, $T_{ST}$에서 각각 3.5 mm, 3.3 mm, 3.9 mm였고, IMRT, RA1, RA2에서 각각 3.7 mm, 3.7 mm, 3.3 mm였다. 가장 복잡한 $T_{BPT}$의 경우에서 IMRT, RA1, RA2의 conformity index는 각각 0.621, 0.761, 0.817 이었고, rDHI는 0.755, 0.796, 0.824 였다. IMRT와 VMAT 모두 척추 정위적 방사선수술에서 표적 종양에 급격한 선량 변화와 등선량 분포를 전달하였다. 그러나 표적 종양이 vertebral body, pedicle, transverse process를 포함한다면, IMRT 치료기법은 VMAT 치료기법과 비교해서 conformity index 측면에서 불충분하였다. 그럼에도 불구하고, IMRT 치료기법은 RA1, RA2와 비교해서 대부분의 영역에서 maximum spinal cord 선량을 줄이는데 더 효과적이었다.

Keywords

References

  1. Benedict SH, Yenice KM, Followill D, et al: AAPM Radiation Therapy Committee Task Group 101: stereotactic body radiation therapy. Med Phys 37:4078-4101 (2010) https://doi.org/10.1118/1.3438081
  2. Matuszak MM, Yan D, Grills I, Martinez A: Clinical applications of volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 77:608-616 (2010) https://doi.org/10.1016/j.ijrobp.2009.08.032
  3. Sahgal A, Larson DA, Chang EL: Stereotactic body radiosurgery for spinal metastases: a critical review. Int Radiat Oncol Biol Phys 71:652-665 (2008) https://doi.org/10.1016/j.ijrobp.2008.02.060
  4. Ingrid TK, Max D, Suresh S, Wilko FV: Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for stereotactic spine radiotherapy: A planning study and early clinical data. Radiother Oncol 94:224-228 (2010) https://doi.org/10.1016/j.radonc.2009.12.027
  5. Nelson JW, Yoo DS, Sampson JH, et al: Stereotactic body radiotherapy for lesions of the spine and paraspinal regions. Int Radiat Oncol Biol Phys 73:1369-1375 (2009) https://doi.org/10.1016/j.ijrobp.2008.06.1949
  6. Wu QJ, Yoo S, Kirkpatrick JP, Thongphiew D, Yin FF: Volumetric arc intensity-modulated therapy for spine body radiotherapy: comparison with static intensity-modulated treatment. Int Radiat Oncol Biol Phys 75:1596-1604 (2009) https://doi.org/10.1016/j.ijrobp.2009.05.005
  7. Wang H, Shiu A, Wang C, et al: Dosimetric effect of translational and rotational error for patients undergoing image-guided stereotactic body radiotherapy for spinal metastases. Int Radiat Oncol Biol Phys 71:1261-1271 (2008) https://doi.org/10.1016/j.ijrobp.2008.02.074
  8. Sahgal A, Ma L, Gibbs I, et al: Spinal cord tolerance for stereotactic body radiotherapy. Int Radiat Oncol Biol Phys 77:548-553 (2010) https://doi.org/10.1016/j.ijrobp.2009.05.023
  9. Gutfeld O, Kretzler AE, Kashani R, Tatro D, Balter JM: Influence of rotations on dose distributions in spinal stereotactic body radiotherapy (SBRT). Int Radiat Oncol Biol Phys 73:1596-1601 (2009) https://doi.org/10.1016/j.ijrobp.2008.12.025
  10. Oh SA, Kang MK, Yea JW, Kim SK, Oh YK: Study of the penumbra for high-energy photon beams with GafchromicTM EBT2 films. J Korean Phys Soc 60:1973-1976 (2012) https://doi.org/10.3938/jkps.60.1973
  11. Zacarias A, Brown MF, Mills MD: Volumetric modulated arc therapy (VMAT) treatment planning for superficial tumors. Med Dosi 35:226-229 (2010) https://doi.org/10.1016/j.meddos.2009.06.006
  12. Shaffer R, Nichol AM, Vollans E, et al: A comparison of volumetric modulated arc therapy and conventional intensitymodulated radiotherapy for frontal and temporal high-grade gliomas. Int Radiat Oncol Biol Phys 76:1177-1184 (2010) https://doi.org/10.1016/j.ijrobp.2009.03.013
  13. Daniela W, Hans C, Hendrik W, Hilke V: Radiotherapy of malignant gliomas: comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. Radiother Oncol 93:593-596 (2009) https://doi.org/10.1016/j.radonc.2009.10.002
  14. Panet-Raymond V, Ansbacher W, Zavgorodni S, et al: Coplanar versus noncoplanar intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment planning for fronto-temporal high-grade glioma. J Appl Clin Med Phys 13:44-53 (2012)
  15. Johnston M, Clifford S, Bromley R, Back M, Oliver L, Eade T: Volumetric-modulated arc therapy in head and neck radiotherapy: a planning comparison using simultaneous integrated boost for nasopharyx and oropharynx carcinoma. Clin Oncol 23:503-511 (2011) https://doi.org/10.1016/j.clon.2011.02.002
  16. Florian S, Dirk W, Heike S, Grit W, Frederik W, Frank L: A comparison of several modulated radiotherapy techniques for head and neck cancer and dosimetric validation of VMAT. Radiother Oncol 101:388-393 (2011) https://doi.org/10.1016/j.radonc.2011.08.023
  17. Kumar SS, Vivekanandan N, Sriram P: A study on conventional IMRT and RapidArc treatment planning techniques for head and neck cancers. Rep Prac Oncol Radiother 17:168-175 (2012) https://doi.org/10.1016/j.rpor.2012.01.009
  18. Benthuysen LV, Hales L, Podgorsak MB: Volumetric modulated arc therapy VS. IMRT for the treatment of distal esophageal cancer. Med Dosi 36:404-409 (2011) https://doi.org/10.1016/j.meddos.2010.09.009
  19. Holt A, Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EMFD: Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int Radiat Oncol Biol Phys 81:1560-1567 (2011) https://doi.org/10.1016/j.ijrobp.2010.09.014
  20. Chin LO, Wilko FARV, Johan PC, Ben JS, Frank JL, Suresh S: Stereotactic radiotherapy for peripheral lung tumors: a comparison of volumetric modulated arc therapy with 3 other delivery techniques. Radiother Oncol 97:437-442 (2010) https://doi.org/10.1016/j.radonc.2010.09.027
  21. Bree I, Hinsberg MGE, Veelen LR: High-dose radiotherapy in inoperable nonsmall cell lung cancer: comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy. Med Dosi 37:353-357 (2012) https://doi.org/10.1016/j.meddos.2011.12.002
  22. Flemming KK, Lars O, Joakim M, Stine K: Rapidarc volumetric modulated therapy planning for prostate cancer patients. Acta Oncol 48:227-232 (2009) https://doi.org/10.1080/02841860802266748
  23. Yoo S, Wu QJ, Lee WR, Yin FF: Radiotherapy treatment plans with rapidarc for prostate cancer involving seminal vesicles and lymph nodes. Int Radiat Oncol Biol Phys 76:935-942 (2010) https://doi.org/10.1016/j.ijrobp.2009.07.1677
  24. Sze HCK, Lee MCH, Hung WM, Yau TK, Lee WM: Rapidarc radiotherapy planning for prostate cancer: single-arc and double-arc techniques vs. intensity-modulated radiotherapy. Med Dosi 37:87-91 (2012) https://doi.org/10.1016/j.meddos.2011.01.005
  25. Quan EM, Li X, Li Y, et al: A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment. Int Radiat Oncol Biol Phys 83:1169-1178 (2011)
  26. Cox BW, Spratt DE, Lovelock M, et al: International spine radiosurgery consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int Radiat Oncol Biol Phys 83:e597-e605 (2012) https://doi.org/10.1016/j.ijrobp.2012.03.009
  27. Ryu S, Jin JY, Jin R, et al: Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628-636 (2007) https://doi.org/10.1002/cncr.22442
  28. Khan FM: The Physics of Radiation Therapy. 4th ed. Williams and Wilkins, Baltimore, MD (2010)
  29. Oh SA, Kang MK, Yea JW, Kim SH, Kim KH, Kim SK: Comparison of intensity modulated radiation therapy dose calculations with a PBC and AAA algorithms in the lung cancer. Korean J Med Phys 23:48-53 (2012)
  30. Feuvret L, Noel G, Mazeron JJ, Bey P: Conformity index: a review. Int Radiat Oncol Biol Phys 64:333-342 (2006) https://doi.org/10.1016/j.ijrobp.2005.09.028
  31. Mike O, Jeff C, Eugene W, Jake VD, Francisco P: A treatment planning study comparing whole breast radiation therapy against conformal, IMRT and tomotherapy for accelerated partial breast irradiation. Radiother Oncol 82:317-323 (2007) https://doi.org/10.1016/j.radonc.2006.11.021

Cited by

  1. Modulation indices for volumetric modulated arc therapy vol.59, pp.23, 2013, https://doi.org/10.1088/0031-9155/59/23/7315
  2. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy vol.41, pp.11, 2013, https://doi.org/10.1118/1.4897388
  3. Optimization of beam orientation and virtual organ delineation for lung IMRT vol.64, pp.7, 2014, https://doi.org/10.3938/jkps.64.1047
  4. 원발성 폐암에서 정위적 체부 방사선치료의 빔 배열에 따른 선량분포의 비교 vol.25, pp.2, 2013, https://doi.org/10.14316/pmp.2014.25.2.110
  5. 선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석 vol.25, pp.3, 2014, https://doi.org/10.14316/pmp.2014.25.3.185
  6. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system vol.67, pp.1, 2015, https://doi.org/10.3938/jkps.67.163
  7. The effect of MLC speed and acceleration on the plan delivery accuracy of VMAT. vol.88, pp.1049, 2013, https://doi.org/10.1259/bjr.20140698
  8. Analysis of the Setup Uncertainty and Margin of the Daily ExacTrac 6D Image Guide System for Patients with Brain Tumors vol.11, pp.3, 2013, https://doi.org/10.1371/journal.pone.0151709
  9. Statistical Determination of the Gating Windows for Respiratory-Gated Radiotherapy Using a Visible Guiding System vol.11, pp.5, 2013, https://doi.org/10.1371/journal.pone.0156357
  10. Standard Exact Couch와 6D Robotic Couch를 이용한 광자선의 조사각에 따른 선량 감쇠에 대한 연구 vol.27, pp.2, 2013, https://doi.org/10.14316/pmp.2016.27.2.79
  11. Evaluations of the setup discrepancy between BrainLAB 6D ExacTrac and cone-beam computed tomography used with the imaging guidance system Novalis-Tx for intracranial stereotactic radiosurgery vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0177798
  12. Feasibility of a 3D-printed anthropomorphic patient-specific head phantom for patient-specific quality assurance of intensity-modulated radiotherapy vol.12, pp.7, 2013, https://doi.org/10.1371/journal.pone.0181560
  13. Fabrication of a Patient-Customized Helmet with a Three-Dimensional Printer for Radiation Therapy of Scalp vol.28, pp.3, 2013, https://doi.org/10.14316/pmp.2017.28.3.100
  14. 체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가 vol.42, pp.3, 2013, https://doi.org/10.17946/jrst.2019.42.3.217