DOI QR코드

DOI QR Code

동해의 동계 극한 폭풍파랑: 토야마만 후시키항의 극한 폭풍파랑 추산 및 파랑 · 구조물 상호작용 연구

Wintertime Extreme Storm Waves in the East Sea: Estimation of Extreme Storm Waves and Wave-Structure Interaction Study in the Fushiki Port, Toyama Bay

  • 투고 : 2013.10.10
  • 심사 : 2013.10.31
  • 발행 : 2013.10.31

초록

2008년 2월 일본 홋카이도 서해상의 발달된 저기압에 의해 생성된 폭풍파랑이 동해상 남/남서쪽으로 전파되어 한국과 일본의 동해 해안을 따라 상당한 인명 및 재산 피해를 입혔다. 본 연구는 두 파트로 구성되어 있다. 첫번째 파트에서는 연안역을 따라 상당한 피해를 입은 일본 토야마만에서의 극한 폭풍파랑을 추산하였다. 추산방법으로는 풍파의 성장발달에 중요한 요소인 바람의 강도와 계속 시간의 극한조건을 산정 후, 극한조건을 적용한 동계 온대저기압 상황을 비정역학 기상모델과 스펙트럼 파랑모델을 이용한 수치 실험을 통해 추산하였다. 추산된 토야마만 후시키 토야마에서의 극한 폭풍파랑의 유의파고 및 주기는 각각 6.78 m와 18.28 sec이다. 두 번째 파트에서는 2008년 2월 폭풍파랑으로 인해 북방파제 및 항구에 상당한 피해를 입은 토야마만 후시키항에서의 파랑-구조물 상호작용에 관한 수치실험을 수행하였다. 수치실험은 적합격자세분화 및 wet-dry법이 적용된 비선형천수방정식 모델을 이용하였다. 첫 파트에서 추산된 폭풍파랑 특성은 파랑-구조물 상호작용 수치실험에서 입사파 조건으로 사용되었다. 수치실험 결과, 후시키항의 북방파제가 폭풍파랑에 의해 파손 시, 배후의 만요우부두는 월파 및 월류에 안전하지 못 함이 파악되었다. 또한, 추산 폭풍파랑 상황 하에서 만요우부두의 현 호안시설로는 측면 호안벽으로부터의 월류에 대응하지 못 함이 파악되었다. 두 번째 수치실험결과로부터, wet-dry법이 적용된 적합격자세분화에 의해 세분화된 격자는, 계산부하를 효율적으로 유지하는 동시에, 해안선의 표현 및 해안구조물의 표현에 뛰어남을 확인하였다.

In February 2008, high storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the East Sea (ES) caused extensive damages along the central coast of Japan and along the east coast of Korea. This study consists of two parts. In the first part, we estimate extreme storm wave characteristics in the Toyama Bay where heavy coastal damages occurred, using a non-hydrostatic meteorological model and a spectral wave model by considering the extreme conditions for two factors for wind wave growth, such as wind intensity and duration. The estimated extreme significant wave height and corresponding wave period were 6.78 m and 18.28 sec, respectively, at the Fushiki Toyama. In the second part, we perform numerical experiments on wave-structure interaction in the Fushiki Port, Toyama Bay, where the long North-Breakwater was heavily damaged by the storm waves in February 2008. The experiments are conducted using a non-linear shallow-water equation model with adaptive mesh refinement (AMR) and wet-dry scheme. The estimated extreme storm waves of 6.78 m and 18.28 sec are used for incident wave profile. The results show that the Fushiki Port would be overtopped and flooded by extreme storm waves if the North-Breakwater does not function properly after being damaged. Also the storm waves would overtop seawalls and sidewalls of the Manyou Pier behind the North-Breakwater. The results also depict that refined meshes by AMR method with wet-dry scheme applied capture the coastline and coastal structure well while keeping the computational load efficiently.

키워드

참고문헌

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. and Perthame, B. (2004). A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput., 25(6), 2050-2065. https://doi.org/10.1137/S1064827503431090
  2. Battjes, J.A. and Janssen, J.P.F. (1978). Energy loss and set-up due to breaking of random waves. Proc. of the 16 th International Conference on Coastal Engineering, 569-587.
  3. Bidlot, J.-R., Abdalla, S. and Janssen, P. (2005). A revised formulation for ocean wave dissipation in cy25r1, Research Department, ECMWF, Reading, U.K.
  4. Booij, N. et al. (2004). Swan user manual, swan cycle iii version 40.41. Delft University of Technology.
  5. Chalikov, D. (1995). The parameterization of the wave boundary layer. J. Phys. Oceanogr., 25, 1333-1349. https://doi.org/10.1175/1520-0485(1995)025<1333:TPOTWB>2.0.CO;2
  6. Chalikov, D.V. and Belevich, M.Y. (1993). One-dimensional theory of the wave boundary layer. Bound.-Lay. Meteorol. , 63, 65-96. https://doi.org/10.1007/BF00705377
  7. Hasselmann, S., Hasselmann, K., Allender, J.H. and Barnett, T.P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part ii: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391. https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
  8. Janssen, P.A.E.M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(11), 1631-1642. https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
  9. Knaff, J.A. and Zehr, R.M. (2007). Reexamination of tropical cyclone wind-pressure relationships. Weather and Forecasting, 22(1), 71-88. https://doi.org/10.1175/WAF965.1
  10. Komen, G.J., Hasselmann, S. and Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8), 1271-1285. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  11. Lee, H.S. (2013a). Abnormal storm waves in the east sea (japan sea) in april 2012. Journal of Coastal Research, SI65, 748-753.
  12. Lee, H.S. (2013b). Evaluation of wavewatch iii performance with wind input and dissipation source terms using wave buoy measurements along the east korean coast in the east sea. Ocean Eng. (in review).
  13. Lee, H.S., Kim, K.O., Yamashita, T., Komaguchi, T. and Mishima, T. (2010). Abnormal storm waves in the winter east/japan sea: Generation process and hindcasting using an atmosphere-wind wave modelling system. Nat. Hazards Earth Syst. Sci., 10(4), 773-792. https://doi.org/10.5194/nhess-10-773-2010
  14. Lee, H.S. and Yamashita, T. (2011). On the wintertime abnormal storm waves along the east coast of korea. Asian and Pacific Coasts 2011, 1592-1599.
  15. Popinet, S. (2003). Gerris: A tree-based adaptive solver for the incompressible euler equations in complex geometries. Journal of Computational Physics, 190(2), 572-600. https://doi.org/10.1016/S0021-9991(03)00298-5
  16. Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, 61(9), 1261-1285. https://doi.org/10.1007/s10236-011-0438-z
  17. Popinet, S. (2012). Adaptive modelling of long-distance wave propagation and fine-scale flooding during the tohoku tsunami. Nat. Hazards Earth Syst. Sci., 12(4), 1213-1227. https://doi.org/10.5194/nhess-12-1213-2012
  18. Skamarock, W.C. et al. (2008). A description of the advanced research wrf version 3. NCAR/TN-475+STR NCAR TECHNICAL NOTE, 113.
  19. Snyder, R.L., Dobson, F.W., Elliott, J.A. and Long, R.B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechanics, 102, 1-59. https://doi.org/10.1017/S0022112081002528
  20. Technical Committee Report (2010). Countermeasures to swell-like waves in the Toyama Bay (in Japanese). Ministry of Land, Infratructure, Transport and Tourism, 53p, October 2010.
  21. Tolman, H.L. (2009). User manual and system documentation of wavewatch iii version 3.14, NOAA NCEP EMC MMAB.
  22. Tolman, H.L. and Chalikov, D.V. (1996). Source terms in a thirdgeneration wind-wave model. J. Phys. Oceanogr., 26, 2497-2518. https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2
  23. Tsuchiya, Y., Komaguchi, T. and Nemoto, K. (1991). Prediction of abnormal waves in the japan sea (in japanese). Annual Journal of Coastal Eng. (JSCE), 38, 111-115.

피인용 문헌

  1. Impacts of tides on tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea, Japan vol.120, pp.10, 2015, https://doi.org/10.1002/2015JC010995
  2. Evaluation of WAVEWATCH III performance with wind input and dissipation source terms using wave buoy measurements for October 2006 along the east Korean coast in the East Sea vol.100, 2015, https://doi.org/10.1016/j.oceaneng.2015.03.009