DOI QR코드

DOI QR Code

Physiological responses to drought stress of transgenic Chinese cabbage expressing Arabidopsis H+-pyrophosphatase

애기장대 H+-pyrophosphatase 발현 형질전환 배추의 건조스트레스에 대한 생리적 반응

  • Jeong, Mihye (Department of Agro-Food Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kang, In-Kyu (Department of Horticultural Science, Kyungpook National University) ;
  • Kim, Chang Kil (Department of Horticultural Science, Kyungpook National University) ;
  • Park, Kyung Il (Department of Horticulture and Life Science, Yeungnam University) ;
  • Choi, Cheol (Department of Horticultural Science, Kyungpook National University) ;
  • Han, Jeung-Sul (Department of Ecological Environment, Kyungpook National University, Department of Ecological Science, Graduate School, Kyungpook National University)
  • 정미혜 (농촌진흥청 국립농업과학원 농산물안전성부) ;
  • 강인규 (경북대학교 농업생명과학대학 원예과학과) ;
  • 김창길 (경북대학교 농업생명과학대학 원예과학과) ;
  • 박경일 (영남대학교 자연자원대학 원예생명과학과) ;
  • 최철 (경북대학교 농업생명과학대학 원예과학과) ;
  • 한증술 (경북대학교 생태환경대학 생태환경전공, 경북대학교 대학원 생태과학과)
  • Received : 2013.07.25
  • Accepted : 2013.08.28
  • Published : 2013.09.30

Abstract

Plant tolerance to drought is a beneficial trait for stabilizing crop productivity under water deficits. Here we report that genetically engineered Chinese cabbage expressing Arabidopsis $H^+$-pyrophosphatase (AVP1) shows enhanced physiological parameters related to drought tolerance. In comparison with wild type plants under soil water deficit stress created by cessation of irrigation, soil water potential in pot with AVP1-expressing plants was more rapidly decreased that might lead to increased relative water content in leaves, while both genotypes had indistinguishable wilting phenotypes. Transgenic plants subjected to drought treatment also exhibited higher photosystem II quantum yield in addition to lower electrolyte leakage and $H_2O_2-3,3^{\prime}$-diaminobenzidine content when compared to wild type plants.

한발에 대한 식물체의 내성은 수분이 부족한 환경에서도 안정적으로 작물의 생산성을 유지하기 위해 필요한 유용한 특성 중 하나이다. 우리는 애기장대의 $H^+$-pyrophosphatase (AVP1)를 발현하도록 형질전환된 배추가 내건성과 관련되어 있는 몇몇 생리적 척도에 있어 향상됨을 검증하였다. 관수중단 처리로 조성된 토양수분 결핍 조건에서 AVP1 발현 식물체는 비형질전환체와 비교하여 비록 외형적 위조의 정도로는 그 차이를 구별할 수 없었지만 형질전환체가 재식된 토양의 수분포텐셜이 비형질전환체 재식 토양에 비해 더 빠르게 낮아졌다. 이는 형질전환체 잎의 상대적 수분함량이 비형질전환체에 비해 더 높은 것과 연관되어 있는 것으로 사료된다. 또한 건조스트레스 환경에서 비형질전환체에 비해 형질전환체는 광계II 양자수율이 높은 반면 전해질누출과 활성산소족의 하나인 $H_2O_2$와 3,3'-diaminobenzidine의 반응산물이 적었다.

Keywords

References

  1. Aiguo D (2011) Drought under global warming: a review. WIREs Clim Change 2:45-65 https://doi.org/10.1002/wcc.81
  2. Baltels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23-58 https://doi.org/10.1080/07352680590910410
  3. Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132:21-32 https://doi.org/10.1111/pbr.12004
  4. Dietz-Pfeilstetter A (2010) Stability of transgene expression as a challenge for genetic engineering. Plant Sci 179:164-167 https://doi.org/10.1016/j.plantsci.2010.04.015
  5. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 $H^{+}$-pump. Proc Natl Acad Sci USA 98:11444-11449 https://doi.org/10.1073/pnas.191389398
  6. Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electro transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87-92 https://doi.org/10.1016/S0304-4165(89)80016-9
  7. Guan Q, Takano T, Liu S (2012) Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa. PLoS ONE 7:1-8
  8. Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene siliencing by double-stranded RNA. Nature Genetics 2:110-119 https://doi.org/10.1038/35052556
  9. Han J-S (2010) Suppression of tobamovirus movement toward upper leaves in the tomato plant over-expression a maize calreticulin. J Plant Biotechnol 37:567-573 https://doi.org/10.5010/JPB.2010.37.4.567
  10. Hirschi K (2001) Vacuolar $H^{+}$/$Ca^{2+}$ transport: who’s directing the traffic? Trend Plant Sci 6:100-104 https://doi.org/10.1016/S1360-1385(00)01863-X
  11. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593-1608 https://doi.org/10.1093/jxb/err460
  12. Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis $H^{+}$-PPase AVP1 regulates auxin-mediated organ development. Science 310:121-125 https://doi.org/10.1126/science.1115711
  13. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730-3734 https://doi.org/10.1073/pnas.97.7.3730
  14. Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z (2013) Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS ONE 8:1-12.
  15. Park M, Won H-Y, Kim CK, Han J-S (2012) Increased biomass and enhanced tolerance to salt stress in Chinese cabbage overexpression Arabidopsis $H^{+}$-PPase (AVP1). J Plant Biotechnol 39:253-260 https://doi.org/10.5010/JPB.2012.39.4.253
  16. Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a $H^{+}$-pyrophosphatase ($H^{+}$-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830-18835 https://doi.org/10.1073/pnas.0509512102
  17. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2010) Expression of an Arabidopsis vacuolar $H^{+}$-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotech J 9:88-99
  18. Shou H, Bordallo P, Fan J-B, Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogenactivated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101:3298-3303 https://doi.org/10.1073/pnas.0308095100
  19. Thapa G, Dey M, Sahoo L, Panda SK (2011) An insight into the drought stress induced alterations in plants. Biol Plantarum 55:603-613 https://doi.org/10.1007/s10535-011-0158-8
  20. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14 https://doi.org/10.1007/s00425-003-1105-5
  21. Wu Q, Lin J, Liu JZ, Wang X, Lim W, Oh M, Park J, Rajashekar CB, Whitham SA, Cheng NH, Hirschi KD, Park S (2012) Ectopic expression of Arabidopsis glutaredoxin AtGRX17 enhances thermotolerance in tomato. Plant Biotechnol J 10:945-955 https://doi.org/10.1111/j.1467-7652.2012.00723.x
  22. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I $H^{+}$ -pyrophosphatase. Plant Biotech J 5:735-745 https://doi.org/10.1111/j.1467-7652.2007.00281.x
  23. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441-445 https://doi.org/10.1016/S1369-5266(03)00085-2

Cited by

  1. Absence of AVP1 transcripts in wild type watermelon scions grafted onto transgenic bottle gourd rootstocks vol.42, pp.1, 2015, https://doi.org/10.5010/JPB.2015.42.1.13
  2. Assessments of salt tolerance in a bottle gourd line expressing theArabidopsisH+-pyrophosphataseAVP1gene and in a watermelon plant grafted onto a transgenic bottle gourd rootstock vol.134, pp.2, 2015, https://doi.org/10.1111/pbr.12253