DOI QR코드

DOI QR Code

Pressure Effects on the Dehydration Behavior of Natrolite

나트로라이트 탈수현상의 압력의존성에 관한 연구

  • Hwang, Gil Chan (Department of Earth System Sciences, Yonsei University) ;
  • Jang, Young-Nam (Korea Institute of Geoscience and Mineral Resources) ;
  • Liu, Zhenxian (Geophysical Laboratory, Carnegie Institution of Washington) ;
  • Lee, Yongjae (Department of Earth System Sciences, Yonsei University)
  • 황길찬 (연세대학교 지구시스템과학과) ;
  • 장영남 (한국지질자원연구원) ;
  • 류젠시안 (카네기연구소 지구물리실험실) ;
  • 이용재 (연세대학교 지구시스템과학과)
  • Received : 2013.09.02
  • Accepted : 2013.09.24
  • Published : 2013.09.30

Abstract

In-situ Raman and X-ray diffraction experiments have been performed on mineral natrolite (Na-zeolite) to investigate the dehydration behavior under high temperature and high pressure-temperature conditions. XRD data show reversible dehydration up to $450^{\circ}C$ whereas Raman data show irreversible change when the material is heated up to $630^{\circ}C$. The existence of post-natrolite was newly identified to form from ${\beta}$-metanatrolite at $380^{\circ}C$ upon cooling. The formation of dehydrated metanatrolite under simultaneous high temperature-pressure (room temperature < T < $300^{\circ}C$, 0 GPa < P < 2.1 GPa) conditions was not observed.

나트로라이트(Na-제올라이트)의 탈수현상에 따른 변화와 특성을 라만 및 X-선 회절실험을 통하여 고온, 동시적인 고온-고압 하에서 특성을 확인하였다. 고온실험은 최고 온도범위에 따라 ${\sim}450^{\circ}C$까지 증온한 XRD 실험에서는 가역적 변화를 관찰하였고, ${\sim}630^{\circ}C$까지 증온한 라만분광실험에서는 포스트라트로라이트로 상전이하는 비가역적인 변화를 관찰하였다. 감온과정 약 $380^{\circ}C$에서 포스트 나트로라이트 상이 나타나는 온도구간을 본 연구에서 새롭게 확인하였다. 동시적인 고온-고압 하(상온 < T < $300^{\circ}C$, 0 GPa < P < 2.1 GPa)에서 나트로라이트 분광선의 이동은 관찰되지 않았다.

Keywords

References

  1. Bassett, W.A., Shen, A.H., Bucknum, M., and Chou, I.M. (1993) Hydrothermal studies in a new diamond- anvil cell up to 10 GPa and from 190-degrees- C to 1200-degrees-C. Pure and Applied Geophysics, 141, 487-495. https://doi.org/10.1007/BF00998341
  2. Baur W.H. and Joswig, W. (1996) The phases of natrolite occurring during dehydration and rehydration studied by single crystal X-ray diffraction methods between room temperature and 923 K. Neues Jahrbuch fur Mineralogie, Monatshefte, 171-187.
  3. Belitsky, I.A., Fursenko, B.A., Gabuda, S.P., Kholdeev, O.V., and Seryotkin, Y.V. (1992) Structural transformations in natrolite and edingtonite. Physics and Chemistry of Minerals, 18, 497-505. https://doi.org/10.1007/BF00205264
  4. Fang, Z.-H. (2005) Temperature dependence of volume thermal expansion for NaCl and KCl crystals. Physica B: Condensed Matter, 357, 433-438. https://doi.org/10.1016/j.physb.2004.12.010
  5. Joswig, W. and Baur, W.H. (1995) The extreme collapse of a framework of NAT topology: The crystal structure of metanatrolite (dehydrated natrolite) at 548 K. Neues Jahrbuch fur Mineralogie, Monatshefte, 26-38.
  6. Klaproth, M.H. (1803) XV Ges. Naturforsch. Freunde. Berlin N. Schr., 4, 243-248.
  7. Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B., and Artioli, G. (2002a) Pressure-induced volume expansion of zeolites in the natrolite family. Journal of the American Chemical Society, 124, 5466-5475. https://doi.org/10.1021/ja0255960
  8. Lee, Y., Vogt, T., Hriljac, J.A., Parise, J.B., Hanson, J. C., and Kim, S.J. (2002b) Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature, 420, 485-9. https://doi.org/10.1038/nature01265
  9. Lee, Y., Hriljac, J.A., Parise, J.B., and Vogt, T. (2005) Pressure-induced stabilization of ordered paranatrolite: A new insight into the paranatrolite controversy. American Mineralogist, 90, 252-257. https://doi.org/10.2138/am.2005.1588
  10. Lee, Y., Hriljac, J.A., and Vogt, T. (2010) Pressure-induced argon insertion into an auxetic small pore zeolite. The Journal of Physical Chemistry C, 114, 6922-6927. https://doi.org/10.1021/jp911231p
  11. Lee, Y., Liu, D., Seoung, D., Liu, Z., Kao, C.-C., and Vogt, T. (2011) Pressure- and heat-induced insertion of $CO_{2}$ into an auxetic small-pore zeolite. Journal of the American Chemical Society, 133, 1674-1677. https://doi.org/10.1021/ja109765d
  12. Liu, D., Lei, W., Liu, Z., and Lee, Y. (2010) Spectroscopic study of the effects of pressure media on high-pressure phase transitions in natrolite. The Journal of Physical Chemistry C, 114, 18819-18824. https://doi.org/10.1021/jp107220v
  13. Liu, D., Liu, Z., Lee, Y., Seoung, D., and Lee, Y. (2012) Spectroscopic characterization of alkali-metal exchanged natrolites American mineralogist, 97, 419-424. https://doi.org/10.2138/am.2012.3932
  14. Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under qua si-hydrostatic conditions. Journal of Geophysical Research, 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  15. Peacor, D.R. (1973) High-temperature, single-crystal X-ray study of natrolite. American Mineralogist, 58, 676-680.
  16. Seo, G. and The korean zeolite association (2005) Introduction to zeolite. Chonnam National University Press, p. 254. (in Korean)
  17. Seoung, D., Lee, Y., and Lee, Y. (2012) In-situ phase transition study of minerals using micro-focusing rotating- anode X-ray and 2-dimensional area detector. Economic and Environmental Geology, 45, 79-88. (in Korean with English abstract) https://doi.org/10.9719/EEG.2012.45.2.079
  18. Smith, Jr, R.L. and Fang, Z. (2009) Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems. The Journal of Supercritical Fluids, 47, 431-446. https://doi.org/10.1016/j.supflu.2008.10.015
  19. van Reeuwijk, L.P. (1972) High-temperature phases of zeolites of the natrolite group. American Mineralogist, 57, 499-510.