References
-
Ivanoc, Y.A., Lewyckyj, N., Levchuk, S.E., Prister, B.S., Firsakova, S.K., Arkhipov, N.P., Arkhipov, A.N., Kruglov, S.V., Alexakhin, R.M., Sandalls, J., Askbrant and S., "Migration of
$^{137}Cs\;and\;^{90}Sr# from Chernobyl fallout in Ukrainian, Belarussian and Russian soils," J. Environmental Radioactivity, 35(1), pp.1-21 (1997) https://doi.org/10.1016/S0265-931X(96)00036-7 - Kirchner, G., "Modeling the migration of fallout radionuclides in soil using a transfer function model," Health Physics, 74(1), pp.78-85, (1998) https://doi.org/10.1097/00004032-199801000-00009
- Bossew, P. and Kirchner, G.., "Modeling the vertical distribution of radionuclides in soil. Part I: the convection-dispersion equation revisited," J. Environmental Radioactivity, 73, pp.127-150, (2004) https://doi.org/10.1016/j.jenvrad.2003.08.006
-
Shinonaga, T., Schimmack, W., Gerzabek and M.H., "Vertical migration of
$^{60}Co,\;^{137}Cs\;and\;^{226}Ra$ in agricultural soils as observed in lysimeters under crop rotation," J. Environmental Radioactivity, 79, pp.93-106, (2005) https://doi.org/10.1016/j.jenvrad.2004.05.018 - McClellan, Y., August, R.A., Gosz, J.R., Gann, S., Parameter and R.R., Windsor, M., "Vertical distribution, migration rats, and model comparison of actinium in a semi-arid environment," J. Environmental Radioactivity, 86, pp.199-211, (2006) https://doi.org/10.1016/j.jenvrad.2005.08.007
-
Solovitch-Vella, N., Pourcelot, L., Chen, V.T., Froidevaux, P., Gauthier-Lafaye, F., Stille and P., Aubert, D., "Comparative migration behavior of
$^{90}Sr,\;^{239+240}Pu\;and\;^{241}Am$ in mineral and organic soils of France," Applied Geochemistry, 22, pp.2526-2535, (2007) https://doi.org/10.1016/j.apgeochem.2007.07.003 -
Lee, M.H., Lee, C.W., Hong, K.H., Choi, Y.H. and Boo, B.H., "Depth distribution of
$^{239,240}Pu\;and\;^{137}Cs$ in soils of South Korea," J. Radioanalytical and Nuclear Chemistry, 204(1), pp.135-144, (1996) https://doi.org/10.1007/BF02060874 -
Lee, M.H., Lee, C.W. and Boo, B.H., "Distribution and Characteristics of
$^{239,240}Pu\;and\;^{137}Cs$ in the Soil of Korea," J. Environmental Radioactivity, 37(1), pp.1-16, (1997) https://doi.org/10.1016/S0265-931X(96)00080-X -
Lee, M.H., Choi, Y.H., Shin, H.S., Kim, S.B. and Lee, C.W., "Cumulative deposition of
$^{137}Cs$ in the soils of Korea," J. the Korean Association for Radiation Protection, 23(2), pp.97-102, (1998) -
Lee, M.H. and Lee, C.W., "Determination of
$^{137}Cs,\;^{90}Sr$ and fallout Pu in the volcanic soil of Korea," J. Radioanalytical and Nuclear Chemistry, 239(3), pp.471-476, (1999) https://doi.org/10.1007/BF02349053 -
Lee, M.H. and Lee, C.W., "Association of fallout-derived
$^{137}Cs,\;^{90}Sr\;and\;^{239,240}Pu$ with natural organic substances in soils, J. Environmental Radioactivity, 47, pp.253-262, (2000) https://doi.org/10.1016/S0265-931X(99)00033-8 -
Cha, H.J., Park, D., Park, H., Kang, M.J., Lee, C.W., Choi, G..S., Choi, Y.H., Chung, K.H., Lee, H.P., Shin, H.S. and Lee, C.W., "Vertical distribution of
$^{137}Cs\;and\;^{90}Sr$ activities in the soils of Korea," J. the Korean Association for Radiation Protection, 29(3), pp.197-204, (2004) -
Cha, H.J., Kang, H., Chung, K.H., Choi, G.S. and Lee, C.W., "Accumulation of
$^{137}Cs$ in soils on different bedrock geology and textures," J. Radioanalytical and Nuclear Chemistry, 267(2), pp.349-355, (2006) https://doi.org/10.1007/s10967-006-0054-4 - Kreft, A. and Zuber, A., "On the Physical meaning of the dispersion equation and its solutions for different initial and boundary conditions," Chemical Engineering Science, 33, pp.1471-1480, (1978) https://doi.org/10.1016/0009-2509(78)85196-3
- Parker, J.C. and van Genuchten, M.T., "Flux- averaged and volume-averaged concentrations in continuum approaches to solute transport," Water Resources Research, 20(7), pp.866-872, (1984) https://doi.org/10.1029/WR020i007p00866
- Kuster, J.L. and Mize, J.H., Optimization techniques with Fortran. McGraw-Hill Inc., New York, USA, (1973)
- Keum, D.K., Lee, H.S., Choi, H.J., Kang, H.S., Lim, K.M., Choi, Y.H. and Lee, C.W., "A dynamic compartment model for assessing the transfer of radionuclide deposited onto flooded rice-fields," J. of Environmental Radioactivity, 76, pp.349-367, (2004) https://doi.org/10.1016/j.jenvrad.2004.02.001
- Tagami, K. and Uchida, S., "Global fallout Tc-99 distribution and behavior in Japanese soils," J. of Nuclear and Radiochemical Sciences, 3(2), pp.1-5, (2002)
- Lieser, K.H. and Bauscher, C., "Technetium in the hydrosphere and in the Geosphere," Radiochim. Acta, 42, pp.205-213, (1987)
- Ishi, N. and Uchida, S., "Gram-negative bacteria responsible for insoluble technetium formation and the fate of insoluble Tc in the water column above flooded paddy soil," Chemosphere, 60, pp.157-163, (2005) https://doi.org/10.1016/j.chemosphere.2004.12.070
- Tagami, K. and Uchida, S., "Microbial role in immobilization of technetium in soil under water-logged conditions," Chemosphere, 23(2), pp.217-225, (1996)
- Boggs, S., Livermore and D. Seitz, M.G., Humic substances in natural waters and their complexation with trace metals and radionuclides. Argonne National Laboratory Report ANL pp.84-78, (1985)
- Kim, J.I., Chemical behavior of transuranic elements in natural aquatic system, In Handbook on the Physics and Chemistry of the Actinides. ed., A.J. Freeman and Keller, North Holland, Amsterdam, pp.413-56, (1986)
- IAEA, Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. TRS 364, International Atomic Energy Agency, Vienna, Austria, (1994)
Cited by
- The level, distribution and source of artificial radionuclides in surface soil from Inner Mongolia, China vol.233, pp.None, 2021, https://doi.org/10.1016/j.jenvrad.2021.106614