DOI QR코드

DOI QR Code

Visibility Estimated from the Multi-wavelength Sunphotometer during the Winter 2011 Intensive Observation Period at Seoul, Korea

2011년 겨울철 서울시 대기 집중 관측 기간 동안 다파장 복사계로 분석된 에어러솔 연직분포와 시정 거리

  • Lee, Kwon-Ho (Department of Geoinformatics Engineering, Kyungil University) ;
  • Kim, Kyung-Won (Department of Environment & Energy Science, Gyeongju University) ;
  • Kim, Gwanchul (School of Environmental Science & Engineering, Gwangju Institute of Science & Technology) ;
  • Jung, Kweon (Atmospheric Environment Team, Research Institute of Public Health & Environment) ;
  • Lee, Soon-Hee (Atmospheric Environment Team, Research Institute of Public Health & Environment)
  • 이권호 (경일대학교 공간정보공학과) ;
  • 김경원 (경주대학교 환경에너지학과) ;
  • 김관철 (광주과학기술원 환경공학부) ;
  • 정권 (서울시 보건환경연구원 대기환경팀) ;
  • 이순희 (서울시 보건환경연구원 대기환경팀)
  • Received : 2013.06.07
  • Accepted : 2013.08.16
  • Published : 2013.10.31

Abstract

The aerosol extinction vertical profile and surface visibility have been derived from the Microtops-II sunphotometer observation during the winter 2011 intensive observation period (IOP) at Seoul, Korea. Using models of degradation of aerosol optical thickness (AOT) and aerosol scale height, we have performed extinction-visibility modulation to determine the height dependent aerosol extinction and visibility. It is shown that the aerosol loading is relatively low during IOP (mean $AOT_{550}=0.22{\pm}0.08$, ${\AA}$ngstr$\ddot{o}$m exponent=$1.14{\pm}0.26$). Modeled extinction by use of Microtops II sunphotometer data shows good agreement with measurements by the Multi-wavelenth Polarization Lidar (MPoLAR), and the derived surface visibility are consistent with data from the transmissometer. These results emphasize the use of a vertically resolved extinction from AOT to predict visibility conditions at ground level.

Keywords

References

  1. Angstrom, A. (1961) The parameters of atmospheric turbidity, Tellus XVI pp. 214-223.
  2. Cho, Y.-S., C.-H. Jung, J.-Y. Son, Y. Chun, and J.-T. Lee (2007) A Time-series study on relationship between visibility as an indicator of air pollution and daily respiratory mortality, Korean J. of Atmos. Environ., 27(3), 326-336. (in Korean with English abstract)
  3. Elterman, L. (1968) UV, visible, and IR attenuation for altitudes to 50 km, Technical Report AFCRL-68-0153, Air Force Geophysics Laboratory, Hanscom Air Force Base, Bedford, MA, USA.
  4. EPA (1999) Visibility monitoring guidance, EPA-454/R-99-003.
  5. Hansen, J.E. and L.D. Travis. (1974) Light Scattering in Planetary Atmospheres, Space Sci. Rev. 16, 527. https://doi.org/10.1007/BF00168069
  6. Hess, M., P. Koepke, and I. Schult (1998) Optical Properties of Aerosols and clouds: The software package OPAC, Bull Am. Meteorol. Soc., 79, 831-844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
  7. Kaufman, Y.J., D. Tanré, H.R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B.M. Herman, M.D. King, and P.M. Teillet (1997) Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, J. of Geophys. Res., 102, 16815-16830. https://doi.org/10.1029/97JD01496
  8. Lee, K.H. (2013) Three dimensional monitoring of the Asian dust by the COMS/GOCI and CALIPSO satellites observation data, Korean J. of Atmos. Environ., 29(2), 199-210. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.2.199
  9. McClatchey, R.A., R.W. Fenn, J.E.A. Selby, F.E. Volz, and J. S. Garin (1972) Optical properties of the atmosphere. 3rd ed. AFCRL Environ. Res. Papers No. 411, 108pp.
  10. Middleton, W. (1952) Vision through the atmosphere. University of Toronto Press.
  11. Nicole, J.E., M.S. Wong, and J. Wang (2010) A 3D aerosol and visibility information system for urban areas using remote sensing and GIS, Atmos. Environ., 44, 2501-2506. https://doi.org/10.1016/j.atmosenv.2010.04.036
  12. Nicolet, M. (1981) The solar spectral irradiance and its action in the atmopsheric photo dissociation processes, Planet. Space Sci., 29, 951-974. https://doi.org/10.1016/0032-0633(81)90056-8
  13. Noh, Y.M., K.H. Lee, and H. Lee (2011) A retrieval of vertically- resolved Asian dust concentration from quartz channel measurements of Raman lidar, Korean J. of Atmos. Environ., 27(3), 326-336. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.3.326
  14. Qiu, J., X.M. Zong, and X.Y. Zhang (2005) A study of the scaling height of the tropospheric aerosol and its extinction coefficient profile, J. Aerosol Sci., 36, 361-371. https://doi.org/10.1016/j.jaerosci.2004.10.005
  15. Retalis, A., D.G. Hadjimitsis, S. Michaelides, F. Tymvios, N. Chrysoulakis, C.R.I. Clayton, and K. Themistocleous (2010) Comparison of aerosol optical thickness with in situ visibility data over Cyprus, Nat. Hazards Earth Syst. Sci., 10, 421-428, doi:10.5194/nhess-10-421-2010.
  16. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle (1998) SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, B. Am. Meteorol. Soc., 79(10), 2101-2114. https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  17. Shin, S., D. Shin, K. Lee, and Y. Noh (2012) Classification of dust/non-dust particle from the Asian dust plumes and retrieval of microphysical properties using Raman Lidar System, Korean J. of Atmos. Environ., 28(6), 688-696. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2012.28.6.688
  18. Vandaele, A.C., C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F. Merienne, A. Jenouvrier, and B. Coquart (2002) High-resolution Fourier transform measurement of the $NO_2$ visible and near-infrared absorption cross sections: Temperature and pressure effects, J. Geophys. Res., 107(D18), 4348, doi:10.1029/2001JD000971.
  19. Wong, M.S., J. Nichol, and K.H. Lee (2009) Modeling of arosol vertical profiles using GIS and remote sensing, Sensors, 9(6), 4380-4389, doi:10.3390/s90604380.
  20. Xin, J., Y. Wang, Z. Li, P. Wang, W.M. Hao, B.L. Nordgren, S. Wang, G. Liu, L. Wang, T. Wen, Y. Sun, and B. Hu (2007) Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005, J. Geophys. Res., 112, D05203, doi:10.1029/2006JD007075.

Cited by

  1. Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea vol.10, pp.1, 2016, https://doi.org/10.5572/ajae.2016.10.1.013
  2. Aerosol Optical Thickness Measurements from the Microtops-II Multi-wavelength Radiometer vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.057