References
- J. D. Ferry, "Viscoelastic Properties of Polymers", 3rd Ed., John Wiley & Sons, New York, 1980.
- N. W. Tschoegl, "The Phenomenological Theory of Linear Viscoelastic Behavior", Springer-Verlag, Berlin, 1989.
- R. I. Tanner, "Engineering Rheology", 2nd Ed., Oxford University Press, New York, 2000.
- J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
- P. J. Carreau, D. C. R. De Kee, and R. P. Chhabra, "Rheology of Polymeric Systems : Principles and Applications", Carl Hanser Verlag, Munich, 1997.
- D. S. Soong, “Time Dependent Nonlinear Viscoelastic Behavior of Polymer Fluids: A Review of Current Understanding”, Rubber Chem Technol, 1981, 54, 641-661. https://doi.org/10.5254/1.3535824
- P. Attane, J. M. Pierrard, and G. Turrel, “Steady and Transient Shear Flows of Polystyrene Solutions I : Concentration and Molecular Weight Dependence of Non-Dimensional Viscometric Functions”, J Non-Newt Fluid Mech, 1985, 18, 295-317. https://doi.org/10.1016/0377-0257(85)87004-X
- F. Beekmans, A. D. Gotsis, and B. Norder, “Influence of the Flow History on Stress Growth and Structure Changes in the Thermotropic Liquid Crystalline Polymer Vectra B950”, Rheol Acta, 1997, 36, 82-95. https://doi.org/10.1007/BF00366726
- M. T. Islam and L. A. Archer, "Nonlinear Rheology of Highly Entangled Polymer Solutions in Start-Up and Steady Shear Flow", J Polym Sci, Part B : Polym Phys, 2001, 39, 2275-2289. https://doi.org/10.1002/polb.1201
- K. Krishnan, W. R. Burghardt, T. P. Lodge, and F. S. Bates, “Transient Rheology of a Polymeric Bicontinuous Microemulsion”, Langmuir, 2002, 18, 9676-9686. https://doi.org/10.1021/la026081p
- W. Letwimolnun, B. Vergnes, G. Ausias, and P. J. Carreau, “Stress Overshoots of Organoclay Nanocomposites in Transient Shear Flow”, J Non-Newt Fluid Mech, 2007, 141, 167-179. https://doi.org/10.1016/j.jnnfm.2006.11.003
- A. K. Tezel, J. P. Oberhauser, R. S. Graham, K. Jagannathan, T. C. B. McLeish, and L. G. Leal, “The Nonlinear Response of Entangled Star Polymers to Start-Up of Shear Flow”, J Rheol, 2009, 53, 1193-1241. https://doi.org/10.1122/1.3160733
- M. Ortiz, D. De Kee, and P. J. Carreau, “Rheology of Concentrated Poly(Ethylene Oxide) Solutions”, J Rheol, 1994, 38, 519-539. https://doi.org/10.1122/1.550472
- B. Briscoe, P. Luckham, and S. Zhu, “Rheological Study of Poly(Ethylene Oxide) in Aqueous Salt Solutions at High Temperature and Pressure”, Macromolecules, 1996, 29, 6208-6211. https://doi.org/10.1021/ma960667z
- W. M. Kulicke, M. Ktter, and H. Grger, “Drag Reduction Phenomenon with Special Emphasis on Homogeneous Polymer Solutions”, Adv Polym Sci, 1989, 89, 1-68. https://doi.org/10.1007/BFb0032288
- K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, “Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (I) : Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation”, J Korean Fiber Soc, 1996, 33, 1083-1093.
- K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, “Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (II) : Comparison of Steady Flow Viscosity with Dynamic and Complex Viscosities”, J Korean Fiber Soc, 1998, 35, 480-489.
- K. W. Song, D. H. Noh, and G. S. Chang, “Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (III) : Determination of Discrete Relaxation Spectrum and Relaxation Modulus from Linear Viscoelastic Functions”, J Korean Fiber Soc, 1998, 35, 550-561.
- K. W. Song, S. H. Ye, and G. S. Chang, “Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (IV) : Nonlinear Stress Relaxation in Single-Step Large Shear Deformations”, J Korean Fiber Soc, 1999, 36, 383-395.
- G. S. Chang, T. H. Kim, K. W. Song, and Y. H. Park, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (V) : Creep and Creep Recovery Behavior", J Korean Fiber Soc, 2002, 39, 660-670.
- A. S. Lodge, “A Network Theory of Flow Birefringence and Stress in Concentrated Polymer Solutions”, Trans Faraday Soc, 1956, 52, 120-130. https://doi.org/10.1039/tf9565200120
- A. S. Lodge, "Elastic Liquids", Academic Press, New York, 1964.
- M. S. Green and A. V. Tobolsky, “A New Approach to the Theory of Relaxing Polymeric Media”, J Chem Phys, 1945, 14, 80-92.
- M. H. Wagner, “Analysis of Time-Dependent Non-Linear Stress-Growth Data for Shear and Elongational Flow of a Low-Density Branched Polyethylene Melt”, Rheol Acta, 1976, 15, 136-142. https://doi.org/10.1007/BF01517505
- P. J. Leider and R. B. Bird, “Squeezing Flow between Parallel Disks. I. Theoretical Analysis”, Ind Eng Chem Fundam, 1974, 13, 336-341. https://doi.org/10.1021/i160052a007
- P. J. Leider, “Squeezing Flow between Parallel Disks. II. Experimental Results”, Ind Eng Chem Fundam, 1974, 13, 342-346. https://doi.org/10.1021/i160052a008
- H. Fromm and Z. Angew, “Laminare Strmung Newtonscher und Maxwellscher Flssigkeiten”, Math Mech, 1947, 25/27, 146-150.
- H. Fromm and Z. Angew, “Laminare Strmung Newtonscher und Maxwellscher Flssigkeiten”, Math Mech, 1948, 28, 43-54.
- F. E. Bailey, Jr. and J. V. Koleske, "Poly(Ethylene Oxide)", Academic Press, New York, 1976.
- V. Gauri and K. W. Koelling, “Extensional Rheology of Concentrated Poly(Ethylene Oxide) Solutions”, Rheol Acta, 1997, 36, 555-567. https://doi.org/10.1007/BF00368133
- S. Q. Wang, S. Ravindranath, Y. Wang, and P. Boukany, “New Theoretical Considerations in Polymer Rheology : Elastic Breakdown of Chain Entanglement Network”, J Chem Phys, 2007, 127, 64903-64916. https://doi.org/10.1063/1.2753156
- R. G. Larson, “Constitutive Relationships for Polymeric Materials with Power-Law Distributions of Relaxation Times”, Rheol Acta, 1985, 24, 327-334. https://doi.org/10.1007/BF01333961
- P. R. Soskey and H. H. Winter, “Large Step Shear Strain Experiments with Parallel Disk Rotational Rheometers”, J Rheol, 1984, 28, 625-645. https://doi.org/10.1122/1.549770
Cited by
- Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields vol.27, pp.4, 2015, https://doi.org/10.1007/s13367-015-0029-5
- Relationships between Steady and Transient Flow Functions for Viscoelastic Polymer Liquids: Experimental and Theoretical Examination of the Gleissle Mirror Relations vol.52, pp.3, 2015, https://doi.org/10.12772/TSE.2015.52.172
- Transient rheological behavior of natural polysaccharide xanthan gum solutions in start-up shear flow fields: An experimental study using a strain-controlled rheometer vol.27, pp.3, 2015, https://doi.org/10.1007/s13367-015-0023-y