DOI QR코드

DOI QR Code

느티만가닥버섯의 ITS (internal transcribed spacer) 영역의 2차구조 분석

Secondary Structure of the Ribosomal Internal Transcribed Spacer (ITS) Region of Hypsizygus marmoreus

  • 투고 : 2013.07.12
  • 심사 : 2013.10.07
  • 발행 : 2013.10.30

초록

본 연구에서는 H. marmoreus 3-10균주와 H. marmoreus 1-1균주의 ribosomal DNA (rDNA) cluster의 분석이 수행되었다. Small subunit (SSU)와 intergenic spacer 2 (IGS 2)는 부분적으로 염기서열이 결정되었고, internal transcribed spacer 1 (ITS 1), 5.8S, internal transcribed spacer 2 (ITS 2), large subunit (LSU), intergenic spacer 1 (IGS 1), 5S는 완전하게 염기서열이 결정 되었다. 팽이버섯 H. marmoreus 3-10균주와 H. marmoreus 1-1균주의 rDNA cluster는 총 7,049 bp로 결정되었다. SSU은 1,796 bp, ITS1은 229 bp, 5.8S은 153 bp, ITS2는 223 bp, LSU은 3,348 bp, IGS1은 390 bp, IGS2은 900 bp로 염기서열이 분석되었다. 결정된 rDNA cluster의 총 7,049 bp 중에서 17 bp가 다름이 확인되었고, 각각 SSU (2 bp), ITS (3 bp), LSU (9 bp), IGS (3 bp)에서 차이를 확인하였다. ITS regions의 2차 구조 결과 5개의 stem-loop가 있음이 드러났다. 흥미롭게도, 이들 stem-loop 사이에서 stem-loop V에서 한 개의 상이한 염기가 다른 2차 구조를 나타냄을 확인하였다.

The ribosomal DNA (rDNA) clusters of Hypsizygus marmoreus 3-10 and H. marmoreus 1-1 were analyzed in this study. The small subunit (SSU) and intergenic spacer 2 (IGS 2) was partially sequenced. The internal transcribed spacer 1 (ITS 1), 5.8S, internal transcribed spacer 2 (ITS 2), large subunit (LSU), intergenic spacer 1 (IGS 1), and 5S were completely sequenced. The rDNA clusters of H. marmoreus 3-10 and H. marmoreus 1-1 were 7,049 bp in length. The sequence of SSU rDNA, which corresponded to 18S rDNA, was 1,796 bp in length, and the sequence of LSU rDNA, which corresponded to 28S rDNA, was 3,348 bp in length. The ITS region that variable region and IGS region that non-transcribed spacer was 462 bp and 1,290 bp in length. The sequence of 5.8S rDNA and 5S rDNA was 153 bp and 43 bp in length, respectively. The 17 bp of the rDNA cluster in the H. marmoreus 3-10 strain was different to that in the H. marmoreus 1-1 strain, with 2 bp in the SSU, 3 bp in the ITS, 9 bp in the LSU, and 3 bp in the IGS. The analysis of the secondary structure revealed that the ITS regions of H. marmoreus 3-10 and H. marmoreus 1-1 have five stem-loop structures. Interestingly, among these structures, one different nucleotide sequence resulted in a different secondary structure in stem-loop V.

키워드

참고문헌

  1. Akavia, E., Beharav, A., Wasser, S. P. and Nevo, E. 2009. Disposal of agro-industrial by-products by organic cultivation of the culinary and medicinal mushroom Hypsizygus marmoreus. Waste Manag 29, 1622-1627. https://doi.org/10.1016/j.wasman.2008.10.024
  2. Alam, N., Shim, M. J., Lee, M. W., Shin, P. G., Yoo, Y. B. and Lee, T. S. 2009. Physiologenetic relationship in different commercial strains of Pleurotus nebredonsis based on ITS sequence and RAPD. Mycobiology 37, 183-188. https://doi.org/10.4489/MYCO.2009.37.3.183
  3. Bao, H., Choi, W. S. and You, S. 2010. Effect of sulfated modification on the molecular characteristics and biological activities of polysaccharides from Hypsizigus marmoreus. Biosci Biotechnol Biochem 74, 1408-1414. https://doi.org/10.1271/bbb.100076
  4. Chen, S. L., Yao, H., Han, J., Liu, C., Zhu,Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, X. Li, X., Jia, X., Lin, Y. and Leon, C. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLos One 5, e8613. https://doi.org/10.1371/journal.pone.0008613
  5. Cheong, J. C., Kim, G. P., Kim, H. K., Park, J. S. and Chung, B. K. 2000. Cultural characteristics of veiled lady mushroom, Dictyophora spp. Mycobiology 28, 165-170.
  6. Ikekawa, T. 1995. Bunashimeji, Hypsizygus marmoreus antitumor activity of extracts and polysaccharides. Food Rev Int 11, 207-209. https://doi.org/10.1080/87559129509541034
  7. Jukes, T. H. and Cantor, C. R. 1969. Evolution of protein molecules. In: Munro, H. N. (ed.), pp. 21, Mammalian protein metabolism, II. New York Academic Press.
  8. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120. https://doi.org/10.1007/BF01731581
  9. Lee, Y. S., Kim, N. W. and Kim, J. B. 2012. Genetic variation based on random amplified polymorphic DNA (RAPD) and Internal Transcribed Spacer (ITS) region sequences in Lepista nuda. J Life Sci 22, 1470-1476. https://doi.org/10.5352/JLS.2012.22.11.1470
  10. Matsuzawa, T., Sano, M., Tomita, I., Saitoh, J. and Ikekawa, T. 1997. Studies on antioxidant effect of Hypsizigus marmoreus. I. Effects of Hypsizigus marmoreus for antioxidant activities of mice plasma. Yakugaku Zasshi 117, 623-628.
  11. Mello, A., Ghignone, S., Vizzini, A., Sechi, C., Ruiu, P. and Bonfante, P. 2006. ITS primers for the identification of marketable boletes. J Biotechnol 121, 318-329. https://doi.org/10.1016/j.jbiotec.2005.08.022
  12. Miyashita, M., Sakane, T., Suzuki, K. and Nakagawa, Y. 2008. 16S rDNA gene and 16S-23S rRNA gene internal transcribed spacer sequences analysis of the genus Myxococcus. FEMS Microbiol Lett 282, 241-245. https://doi.org/10.1111/j.1574-6968.2008.01127.x
  13. Moradali, M. F., Mostafavi, H., Ghods, S. and Hedgaroude, G. A. 2007. Immunomodulating and anticancer agent in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7, 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
  14. Mori, K., Kobayashi, C., Tomita, T., Inatomi, S. and Ikeda, M. 2008. Antiatherosclerotic effect of the edible mushroom Pleurotus eryngii, Grifola frondosa, and Hypsizygus marmoreus in apolipoprotein E-deficient mice. Nutr Res 28, 335-342. https://doi.org/10.1016/j.nutres.2008.03.010
  15. Nakamura, K. 2006. Bottle cultivation of culinary-medicinal Bunashimeji mushroom Hypsizygus marmoreus (Peck) bigel. (Agaricomycetideae) in Nagano Prefecture (Japan). Int J Med Mushr 8, 179-186. https://doi.org/10.1615/IntJMedMushr.v8.i2.90
  16. Park, D. S., Kang, H. W., Kim, K. T., Cho, S. M., Park, Y. J., Shin, H. S., Lee, M. B. and Go, S. J. 2001. PCR-based sensitive detection of wood decaying fungus Phellinus linteus by specific primer from rDNA ITS regions. Micobiology 29, 7-10.
  17. Ray, P. and Adholeya, A. 2008. Development of molecular markers of ectomycorrhizal fungi based on ITS region. Curr Microbiol 57, 23-26. https://doi.org/10.1007/s00284-008-9146-4
  18. Royse, D. J. 1995. Specialty mushrooms: cultivation on synthetic substrate in the USA and Japan. Interdisciplin Sci Rev 20, 205-214. https://doi.org/10.1179/030801895794080648
  19. Saitou, N. and Nei, M. 1987. The Neighbor-Joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4, 406-425.
  20. Su, H., Wang, L., Liu, L., Chi, X. and Zhang, Y. 2008. Use of inter-simple sequence repeat markers to develop strain-specific SCAR markers for Flammulina velutipes. J Appl Genet 49, 233-235. https://doi.org/10.1007/BF03195619
  21. Uhart, M., Sirand-Pugnet, P. and Labarere, J. 2007. Evolution of mitochondrial SSU-rDNA variable domain sequences and rRNA secondary structures, and phylogeny of the Agrocybe aegerita multispecies complex. Res Microbiol 158, 203-212. https://doi.org/10.1016/j.resmic.2006.12.009
  22. Wasser, S. P. 2002. Medical mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60, 258-274. https://doi.org/10.1007/s00253-002-1076-7
  23. Won, H. and Renner, S, S. 2005. The internal transcribed spacer of nuclear ribosomal DNA in the gymnosperm Gnetum. Mol Phylogenet Evol 36, 581-597. https://doi.org/10.1016/j.ympev.2005.03.011
  24. White, T. J., Burns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungi ribosomal RNA Genes for phylogenetic. In PCR protocols: A guide to methods and amplification. J Academic Press San Diego California 315-322.