DOI QR코드

DOI QR Code

Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154

Pseudomonas sp. BCNU 154 유래의 유기용매 내성 리파아제

  • Choi, Hye Jung (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University) ;
  • Hwang, Min Jung (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University) ;
  • Seo, Jeoung-Yoon (Department of Environmental Engineering, Changwon National University) ;
  • Joo, Woo Hong (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University)
  • 최혜정 (창원대학교 생물학과.생물공학협동과정) ;
  • 황민정 (창원대학교 생물학과.생물공학협동과정) ;
  • 서정윤 (창원대학교 환경공학과) ;
  • 주우홍 (창원대학교 생물학과.생물공학협동과정)
  • Received : 2013.01.23
  • Accepted : 2013.10.22
  • Published : 2013.10.30

Abstract

An organic solvent-tolerant lipase of Pseudomonas sp. BCNU 154 that was isolated from wastewater in the industrial complex region had optimal activity at $37^{\circ}C$ and pH 8. This crude extracellular lipase from BCNU 154 exhibited maximum stability in toluene, retaining about 6.01 U/ml (117.53%) activity for 2 h. $Ca^{2+}$, $Mg^{2+}$, $NH_4{^+}$, and $Na^+$ ions and triton X-100 activated the enzymes, whereas $Ba^{2+}$, $Hg^{2+}$, and $Zn^{2+}$ ions inhibited their activity. Pseudomonas sp. BCNU 154 lipase revealed stable activity comparable to that of the commercial immobilized Novozym 435. Thus, this organic solvent-tolerant lipase could have potential as a whole cell biocatalyst in industrial chemical processes without the use of immobilization.

산업공단지역의 폐수에서 분리한 유기용매 내성 Pseudomonas sp. BCNU 154 리파아제의 최적조건은 $37^{\circ}C$, pH8로 조사되었다. BCNU 154의 crude 리파아제는 toluene에서 2시간 반응시 효소활성 약 6.01 U/ml (117.53%)로 가장 안정한 것으로 나타났다. 한편 $Ca^{2+}$, $Mg^{2+}$, $NH_4{^+}$, $Na^+$ 이온 및 triton X-100은 효소를 활성화시킨 반면에 $Ba^{2+}$, $Hg^{2+}$$Zn^{2+}$ 이온은 효소활성을 억제하였다. Pseudomonas sp. BCNU 154 리파아제는 상용 고정화 효소인 Novozym 435와 비교해서도 안정한 활성을 보였다. 그러므로 유기용매 내성 리파아제는 별도의 고정화 처리없이도 화학산업공정에서 가능성 있는 whole cell 생물촉매로서 유용할 것으로 판단된다.

Keywords

References

  1. Aono, R., Itoh, M., Inoue, A. and Horikoshi, K. 1992. Isolation of novel toluene-tolerant strain Pseudomonas aeruginosa. Biosci Biotechnol Biochem 56, 145-146. https://doi.org/10.1271/bbb.56.145
  2. Dandavate, V., Jinjala, J., Keharia, H. and Madamwar, D. 2009. Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour Technol 100, 3374-3381. https://doi.org/10.1016/j.biortech.2009.02.011
  3. Fukuda, H., Kondo, A. and Noda, H. 2001. Biodisel fuel production by transesterificaion of oils. J Biosci Bioeng 92, 405-416. https://doi.org/10.1016/S1389-1723(01)80288-7
  4. Ruchi, G., Anshu, G. and Khare, S. K. 2008. Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Thehnol 99, 4796-4802. https://doi.org/10.1016/j.biortech.2007.09.053
  5. Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb Technol 39, 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  6. Jaeger, K. E. and Eggert, T. 2004. Enantioselective biocatalysis optimized by directed evolution. Curr Opin Chem Biol 15, 305-313.
  7. Ji, Q., Xiao, S., He, B. and Liu, X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LK1 and its application of biodiesel production. J Mol catal B: Enzyme 66, 264-269. https://doi.org/10.1016/j.molcatb.2010.06.001
  8. Jose, C., Austic, G. B., Bonetto, R. D., Burton, R. M. and Briand, L. E. 2013. Investigation of the stability of $Novozym^{(R)}$ 435 in the production of biodiesel. Catalysis Today 213, 73-80. https://doi.org/10.1016/j.cattod.2013.02.013
  9. Kwon, D. Y. and Rhee, J. S. 1986. A simple and rapid colorimetric method for determination of free fatty acid for lipase assay. J Am Oil Chem Soc 63, 89-92. https://doi.org/10.1007/BF02676129
  10. Laane, C. 1987. Medium engineering for bio-organic synthesis. Biocatal Biotransform 1, 17-22. https://doi.org/10.3109/10242428709040127
  11. Magnusson, A. O., Rotticci-Mulder, J. C., Santagostino, A. and Hult, K. 2005. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chem Biochem 6, 1051-1056.
  12. Ogino, H., Miyamoto, K. and Ishikawa, H. 1994. Organic solvent-tolerant bacterium which secretes an organic solvent-stable lipolytic enzyme. Appl Environ Microbiol 60, 3884- 3886.
  13. Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasudo, N. and Ishikawa, H. 2000. Purification and characterization of organic solvent tolerant lipase from organic solvent tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 89, 451-457. https://doi.org/10.1016/S1389-1723(00)89095-7
  14. Rahman, R. N. Z. R. A., Baharum, S. N., Basri, M. and Salleh, A. B. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem 341, 267-274. https://doi.org/10.1016/j.ab.2005.03.006
  15. Chen, S., Qian, L. and Shi, B. 2007. Purification and properties of enantioselective lipase from a newly isolated Bacillus cereus C71. Process Biochem 42, 988-994. https://doi.org/10.1016/j.procbio.2007.03.010
  16. Sharma, A. K., Tiwari, R. P. and Hoondal, G. S. 2001. Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp. AG-8. J Basic Microbiol 41, 363-366. https://doi.org/10.1002/1521-4028(200112)41:6<363::AID-JOBM363>3.0.CO;2-C
  17. Sulong, M. R., Rahman, R. N. Z., Salleh, A. B. and Basri., M. 2006. A novel organic solvent tolerant lipase from Bacillus sphaericus 205y: Extracellular expression of a novel OST-lipase gene. Pro Exp Puri 49, 190-195. https://doi.org/10.1016/j.pep.2006.04.015
  18. Tanaka, D., Yoneda, S., Yamashiro, Y., Sakatoku, A., Kayashima, T., Yamakawa, K. and Nakamura, S. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol 168, 327-338. https://doi.org/10.1007/s12010-012-9776-7
  19. Winkler, U. K. and Stuckmann, M. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratua marcescens. J Bacteriol 138, 663-670.
  20. Yoo, H. Y., Simkhada, J. R., Cho, S. S., Park, D. H., Kim, S. W., Seong, C. N. and Yoo, J. C. 2011. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour Technol 102, 6104-6111. https://doi.org/10.1016/j.biortech.2011.02.046

Cited by

  1. Solvent Tolerant Bacteria and Their Potential Use vol.25, pp.12, 2015, https://doi.org/10.5352/JLS.2015.25.12.1458
  2. Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 171 vol.25, pp.3, 2015, https://doi.org/10.5352/JLS.2015.25.3.345
  3. Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.603