DOI QR코드

DOI QR Code

A Study on Prototype Model for Mesoscopic Evacuation Using Cube Avenue Simulation Model

Cube Avenue 시뮬레이션 모델을 이용한 중규모 재난대피 프로토타입 모델 연구

  • Received : 2013.07.26
  • Accepted : 2013.10.29
  • Published : 2013.10.31

Abstract

Recently, the number of disasters has been seriously increasing. The total damages by the natural or man-made disasters during the past years resulted in tremendous fatalities and recovery costs. It is necessary to have efficient emergency evacuation management which is concerned with identifying evacuation route, and the estimation of evacuation and clearance times. An emergency evacuation model is important in identifying critical locations, and developing various evacuation strategies. In that existing evacuation models have focused on route analysis for indoor evacuation, there are only a few models for areawide emergency evacuation analysis. Therefore, we developed a mesoscopic model by using Cube Avenue and performed evacuation simulation, targeting road network in City of Fargo, North Dakota. Consequently, a mesoscopic model developed in this study is used to carry out dynamic analysis using network and input variable of existing travel demand model. The results of this study show that the model is an appropriate tool for areawide emergency evacuation analysis to save time and cost. Henceforth, the results of this study can be applied to develop a disaster evacuation model which can be used for a variety of disaster simulation and evaluation based on scenarios in the local metropolitan area.

최근, 각종 자연재해와 산업재해로 인한 피해규모의 증가와 이에 따른 대책 수립의 필요성이 증가하고 있으며 재난 규모 역시 대형화, 거대화됨에 따라 피해규모는 점점 더 심각해지고 있다. 이러한 각종 재난 시 재난대피계획의 핵심은 재난대피에 소요되는 시간추정, 병목지점 파악 등을 포함하며 이러한 재난대피계획의 수립과 평가를 위해서는 적절한 재난대피모델이 필요하다. 또한, 기존 연구가 주로 건축물 실내를 대상으로 재난 시 대피경로분석이 주를 이루기 때문에, 자연재해 시 지역을 대상으로 하는 재난대피모델에 관한 연구가 미진하여 도시 내의 재해영향권에 대한 재난대피모델 구축 사례가 없는 실정이다. 이에 본 연구에서는 Cube Avenue를 이용하여 거시통행 수요모형을 설계하고 미국 노스 다코다(North Dakota)주의 파고(Fargo)시의 도로 네트워크를 대상으로 재난 대피 시뮬레이션을 수행하였다. 결과적으로 본 연구에서 제안된 중규모 재난대피모델은 기존 통행수요모형의 네트워크와 입력 변수들을 이용하여서 동적 분석을 할 수 있어 시간과 비용을 절약할 수 있는 재난대피 시뮬레이션 분석에 활용 가능함을 확인할 수 있었다. 본 연구의 결과는 향후, 국내 대도시권에 적용이 가능하며 시나리오를 기반으로 한 다양한 재난모의 실험 및 평가가 가능한 모델 개발에 활용 가능할 것이다.

Keywords

References

  1. Citilabs, 2013, Cube Voyager Reference Guide.
  2. Kaan, O.; Anil, Y. M; Shrisan, I; Jian, L; Eren E. O; Jon, A. C. 2012, Use of Regional Transportation Planning Tool for Modeling Emergency Evacuation Case Study of Northern New Jersey, Transportation Research Record: Journal of the Transportation Research Board, 89-97.
  3. Kwak, S. Y. 2011, Modeling pedestrian behavior for optimal evacuation in indoor spaces using the genetic algorithm, Master's Thesis, University of Seoul.
  4. Kuligowski, E. D; Peacock, R. D. 2005, A Review of Building Evacuation Models, NIST Technical Note 1471.
  5. Longo, Francesco. 2010, Emergency Simulation: State of the Art and Future Research Guidelines, SCS M&S Magazine.
  6. FHWA. 2004, Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software, Publication No. FHWA-HRT-04-040.
  7. FHWA. 2012, Traffic Analysis Toolbox Volume XIII: Work Zone Traffic Analysis-Applications and Decision Framework, Publication No. FHWA-HOP-12-009.
  8. Pel, A; Bliemer, M; Hoogendoorn, S. 2011, Modelling Traveller Behaviour under Emergency Evacuation Conditions, EJTIR 11(2):166-193.
  9. Mclean, M. A; Moeller, M; Desrosiers, A; Urbanik, T. 1983, CLEAR: A Model for Calculation of Evacuation Time Estimates in Emergency Planning Zones, In Proceedings of the Conference on Computer Simulation in Emergency Planning, 112:58-63.
  10. Hiramatsu, T. 1983, Development of a Network Flow Simulator NESSY-IV for Analyses of Mass Evacuation in Case of Emergency, Journal of Information Processing, 6(1):1-9.
  11. Hobeika, A. G; Jamei, B. 1985, MASSVAC: A Model for Calculating Evacuation Times under Natural Disasters, In Proceedings of The Conference on Computer Simulation in Emergency Planning, 5(1):23-28.
  12. Hobeika, A; Kim, S. G; Beckwith, R. E. 1994. A Decision Support System for Developing Evacuation Plans Around Nuclear Power Stations, Interfaces, 245:22-35.
  13. Han, A. F. 1990. TEVACS: Decision Support System for Evacuation Planning in Taiwan, Journal of Transportation Engineering, 116(6): 821-830. https://doi.org/10.1061/(ASCE)0733-947X(1990)116:6(821)
  14. Lieberman, E. B; Andrews, B. J. 1980, TRAFLO: A New Tool To Evaluate Transportation System Management Strategies, Transportation Research Record, 772:9-15.
  15. Nam, H. W; Kwak, S. Y; Jun, C. M. 2012, A Prototype for Real-time Indoor Evacuation Simulation System using Indoor IR Sensor Information, Journal of Korea Spatial Information Society, 20(2):155-164. https://doi.org/10.12672/ksis.2012.20.2.155
  16. Sheffi, Y; Mahmassani, H. S; Powell, W. B. 1982, A Transportation Network Evacuation Model, Transportation Research Part A: Policy and Practice[J], 16:209-218. https://doi.org/10.1016/0191-2607(82)90022-X
  17. Tufekci, S; Kisko, T. M. 1991, Regional Evacuation Modeling System REMS: A Decision Support System for Emergency Area Evacuations, Computers and Industrial Engineering, 211(4): 89-93.
  18. Park, I. H; Jun, C. M; Lee, J. Y. 2008, GISbased Fire Evacuation Simulation using CA Model, The Journal of GIS Association of Korea, 16(2):157-171.
  19. Pidd, M; Silva, F. N; Eglese, R. W. 1996, A Simulation Model for Emergency Evacuation, European Journal of Operational Research, 90: 413-419. https://doi.org/10.1016/0377-2217(95)00112-3
  20. Wu, S; Shuman, L; Bidanda, B; Kelly, M; Ken, S; Balahan, C. 2007, Embedding GIS in Disaster Simulation, 2007 Environmental Systems Research Institute International User Conference Proceedings, San Diego, CA.

Cited by

  1. Application of Open Information Model for the Information Management on Building Flood Damage vol.27, pp.6, 2014, https://doi.org/10.7734/COSEIK.2014.27.6.565
  2. Examining Flood Evacuation Behaviors Using an Agent-based Model vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.163