DOI QR코드

DOI QR Code

Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery

KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류

  • 김상일 (한국해양과학기술원부설 극지연구소) ;
  • 김현철 (한국해양과학기술원부설 극지연구소) ;
  • 신정일 (한국해양과학기술원부설 극지연구소) ;
  • 홍순규 (한국해양과학기술원부설 극지연구소)
  • Received : 2013.10.01
  • Accepted : 2013.10.21
  • Published : 2013.10.31

Abstract

Baton Peninsula, where Sejong station is located, mainly covered with snow and vegetation. Because this area is sensitive to climate change, monitoring of surface variation is important to understand climate change on the polar region. Due to the inaccessibility, the remote sensing is useful to continuously monitor the area. The objectives of this research are 1) map classification of land-cover types in the Barton Peninsular around King Sejong station and 2) grasp distribution of vegetation species in classified area. A KOMPSAT-2 multispectral satellite image was used to classify land-cover types and vegetation species. We performed classification with hierarchical procedure using KOMPSAT-2 satellite image and ground reference data, and the result is evaluated for accuracy as well. As the results, vegetation and non-vegetation were clearly classified although species shown lower accuracies within vegetation class.

남극 세종 과학 기지가 위치하고 있는 바톤반도는 눈과 식생이 주를 이루고 있고, 기후변화와 같은 환경변화에 민감하게 반응한다. 극지역의 지표 모니터링은 기후변화 이해를 위해 중요하다. 그러나 극 지역은 접근성 및 공간규모로 인해 지속적으로 모니터링 하기에 어려움이 있다. 위성영상은 지속적으로 동일지역을 모니터링 할 수 있다는 장점과 함께 다중분광영역을 이용하여 지표의 상태를 파악하는데 효율적이다. 따라서 본 연구에서는 바톤반도의 지표의 상태를 지속적으로 모니터링하기 위한 기초자료로 KOMPSAT-2 다중 분광 위성영상을 이용하여 토지피복분류를 수행하였고, 나아가 분류된 토지피복 중 식생 종의 분포를 파악하였다. 다중분광영상인 KOMPSAT-2 위성영상과 현장관측자료를 이용하여 계층적 분류를 수행하였고 정확도를 평가하였다. 전반적으로 식생지역과 비식생 지역이 명확하게 분류되었으나 식생 종 분류에는 낮은 정확도를 보였다.

Keywords

References

  1. Boles S., X. Xiao, J. Liu, Q. Zhang, S. Munkhtuya, S. Chen and D. Ojima, 2004. Land cover characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sensing of Environment, 90: 477-489. https://doi.org/10.1016/j.rse.2004.01.016
  2. Cihlar J., Q. Xiao, J. Chen, J. Beaubien, K. Fung and R. Latifovic, 1998. Classification by progressive generalization: A new automated methodology for remote sensing multichannel data. International Journal of Remote Sensing, 19: 2685-2704. https://doi.org/10.1080/014311698214451
  3. Fretwell P.T., P. Convey, A.H. Fleming, H.J. Peat and K.A. Hughes, 2011. Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol, 34: 273-281. https://doi.org/10.1007/s00300-010-0880-2
  4. Hansen, P.M., and J.K., Schjoerring, 2003. Reflectance measurement of canopy using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86: 542-553. https://doi.org/10.1016/S0034-4257(03)00131-7
  5. Irvin, B.J., S.J. Ventura and B.K. Slate, 1997. Fuzzy and isodata classification of landform elements from digital terrain in Pleasant Valley, Wisconsin, Geoderma, 77: 137-154. https://doi.org/10.1016/S0016-7061(97)00019-0
  6. Jiang, Z., A.R. Huete, J. Chen, Y. Chen, J. Li, G. Yan and X. Zhang , 2006. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101(3): 366-378. https://doi.org/10.1016/j.rse.2006.01.003
  7. Kim, J.H., I.Y. Ahn, S.G. Hong, M. Andreev, K.M. Lim, M.J. Oh, Y.J. Koh, and J.S. Hur, 2006. Lichen Flora around the Korean Antarctic Scientific Station, King George Island, Antarctic. The Journal of Microbiology, 44(5): 480-491.
  8. Kim, J.H., I.Y. Ahn, K.S. Lee, H.S. Chung, and H.G. Choi, 2007. Vegetation of Barton Peninsula in the neighbourhood of King Sejong Station(King George Island, maritime Antarctic). Polar Biol, 30: 903-916. https://doi.org/10.1007/s00300-006-0250-2
  9. Kim, S.I., K.S. Han, J.M. Yeom, 2011. An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath Satellite. Korea Journal of Remote Sensing, 27(3): 303-314. https://doi.org/10.7780/kjrs.2011.27.3.303
  10. Lewis Smith RI, 1994. Vascular plants as bioindicator of regional warming in Antarctica. Oecologia 99: 322-328. https://doi.org/10.1007/BF00627745
  11. Longton, R.E., 1988. The biology of polar bryophytes and lichens, Cambridge University Press, Cambridge, UK
  12. Mcmichael, C.E., A.S. Hope, D.A. Stow, J.B. Fleming, G. Vourlitis, and W. Oechel, 1999. Estimating co2 exchange at two sites in arctic tundra ecosystems during the growing season using a spectral vegetation index. International journal of remote sensing, 20: 683-698. https://doi.org/10.1080/014311699213136
  13. Melesse, A.M. and Jordan J.D., 2002, A Comparison of Fuzzy vs. Augmented-ISODATA Classification Algorithms for Cloud-Shadow Discrimination from Landsat Images, Photogrammetric Engineering & Remote Sensing, 68(9): 905-911.
  14. Muller, S.V., A.E. Racoviteanu, and D.A. Walker, 1999. Landsat MSS-derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps. International Journal of Remote Sensing, 20: 2921-2946. https://doi.org/10.1080/014311699211543
  15. Pearson, R.L., and L.D., Miller, 1972. Reflectance measurement of canopy using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86: 542-553.
  16. Rakusa-Suszczewski S, M. Mietus and J. Piasecki, 1993. Weather and climate. In: Rakusa-Suszczewski S(Ed.). The maritime Antarctic coastal ecosystem of Admiralty Bay. Warsaw, Polish Academy of Sciences, 19-25.
  17. Rouse, J.W., R.H., Haas, J.A., Schell, D.W., Deering, and J.C., Harlen, 1972. Monitoring the vernal advancement of retrogradation(green wave effect) of natural vegetation, NASA/GSFC, Type 3, Final Report, Greenbelt, MD USA, 1-371.
  18. Sellers, P.J., and D.S. Schmid, 1993. Remote Sensing of the land biosphere and biogeochemistry in the EOS era: Science priorities-EOS land biosphere and biogeochemical cycles panels, Global Planetary Change, 7(4): 279-297. https://doi.org/10.1016/0921-8181(93)90002-6
  19. Serreze, M.C., J.E. Walsh, F.S. Chapin Iii, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W.C. Oechel, J. Morison, T. Zhang, and R.G. Barry, 2000. Observational evidence of recent change in the northern highlatitude environment. Climatic Change, 46: 159-207. https://doi.org/10.1023/A:1005504031923
  20. Stow, D.A., A. Hope, D. Mcguire, D. Verbyla, J. Gamon, F. Huemmrich, S. Houston, C. Racine, M. Sturm, K. Tape, L. Hinzman, K. Yoshikawa, C. Tweedie, B. Noyle, C. Silapaswan, D. Douglas, B. Griffith, G. Jia, H. Epstein, D. Walker, S. Daeschner, A. Petersen, L. Zhou, and R. Myneni, 2004. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sensing of Environment, 89: 281-308. https://doi.org/10.1016/j.rse.2003.10.018
  21. Walker, D.A., 2000. Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Global Change Biology, 6: 19-34. https://doi.org/10.1046/j.1365-2486.2000.06010.x

Cited by

  1. Breeding records of kelp gulls in areas newly exposed by glacier retreat on King George Island, Antarctica vol.35, pp.1, 2017, https://doi.org/10.1007/s10164-016-0500-x
  2. KOMPSAT-3A 입체영상을 이용한 남극 DEM 제작과 DEM 매칭에 의한 두 시기의 DEM 비교 vol.35, pp.3, 2013, https://doi.org/10.7848/ksgpc.2017.35.3.167
  3. 랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화 vol.23, pp.4, 2020, https://doi.org/10.11108/kagis.2020.23.4.052