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GEOMETRIC AND ANALYTIC INTERPRETATION OF

ORTHOSCHEME AND LAMBERT CUBE IN EXTENDED

HYPERBOLIC SPACE

Yunhi Cho and Hyuk Kim

Abstract. We give a geometric proof of the analyticity of the volume of
a tetrahedron in extended hyperbolic space, when vertices of the tetra-
hedron move continuously from inside to outside of a hyperbolic space
keeping every face of the tetrahedron intersecting the hyperbolic space.
Then we find a geometric and analytic interpretation of a truncated or-
thoscheme and Lambert cube in the hyperbolic space from the viewpoint
of a tetrahedron in the extended hyperbolic space.

1. Introduction

The volume of a tetrahedron in the hyperbolic space is a bit complicated
analytic function of dihedral angles (see [4], [11]). If we analytically continue
its dihedral angles so that the vertices of tetrahedron move out crossing the
ideal boundary, the volume function still gives us complex numbers as analytic
continuations of volume. In fact, this function has a singularity exactly when
a vertex passes through the ideal boundary and then becomes multi-valued
after that point. In this paper, we want to investigate carefully the geomet-
ric meaning of real and imaginary part of this complex numbers appeared as
branches.

The best way of describing these is to use the extended model studied in [6]
(as a remark, [2] and [8] implicitly showed the strong evidence for the existence
of 2 and 3-dimensional extended hyperbolic space, even though the paper [8]
only considered hyperbolic space itself). The extended hyperbolic space is the
projective space obtained from the Minkowski space with the induced metric
where the sign of metric is changed for the Lorentzian part so that the sectional
curvature is always equal to−1. The metric is singular along the ideal boundary
and for a unified treatment of these two spaces we need a way to define a
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volume of a geometric object lying across the boundary. We used two different
methods to achieve this goal. One way is to perturb the metric by replacing 1 by
dǫ = 1−ǫi in the denominator so that the metric becomes complex nonsingular
metric, and then compute the volume and take a limit as ǫ → 0. The other
way is an integration using polar coordinates and at the last integration in the
radial direction we take a clockwise contour integral to avoid the singularity.
And we showed these two methods give the same result. It is also shown
that the dǫ = 1 + ǫi approximation corresponds to counterclockwise contour
integration. The contour integrations also give us countably many different
values depending on the contour types.

For a hyperbolic tetrahedron, if we continuously move vertices out from in-
side to outside of the hyperbolic space H3 keeping every edge of the tetrahedron
intersecting H3 (the more general condition of keeping every face intersecting
H3 is also considered in this paper), then the volume of this ultra tetrahedron
in the extended space is expressed by the same analytic multi-valued func-
tion. Only when the moving vertex is on the ideal boundary ∂H3, the volume
function is not analytic but continuous at the point.

Also, we obtain the following nice geometric interpretation (a generalization
of the results of Kellerhals [8] and Usijima [13]) for the multi-valued analytic
tetrahedron volume formula f :

(1)

f = Ref + i Imf

= volume of truncated tetrahedron

+
πi

4
(total area of the truncated faces),

for clockwise analytic continuation of f and the clockwise definition of the
extended hyperbolic space, or

f = volume of truncated tetrahedron− πi

4
(total area of the truncated faces),

for counterclockwise analytic continuation of f and the counterclockwise def-
inition of the extended hyperbolic space. The truncated tetrahedron in (1) is
obtained from a tetrahedron by polar truncation at the vertices lying outside
the hyperbolic space. For other branches, we get a generalized version of (1)
(see (10)).

In fact, many mathematicians confronted this kind of choice problem from
a multi-valued volume, it seems very difficult to find a suitable choice from
a multi-valued analytic volume function. However the volume of the general
tetrahedron with vertices beyond the ideal boundary in the extended hyperbolic
space takes only one value among the multi-values with a suitable contour
choice, or the choice of dǫ. This shows one useful aspect of extended hyperbolic
space, i.e., extended hyperbolic space always gives a unique consistent volume
choice among multi-values.
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In addition, we can easily imagine that the analytic volume formula of a
hyperbolic tetrahedron could be applicable to a general tetrahedron wherever
it is positioned in extended hyperbolic space. The analyticity of the volume
formula for a general tetrahedron across the hyperbolic ideal boundary in ex-
tended space will be treated in a future work.

From the natural geometric viewpoint, we are convinced that our result and
[7] will show an interesting relation between extended space theory and scissors
congruence theory.

Lastly, we give a simple application of our analyticity result to the volumes
of orthoschemes, Lambert cubes, and prisms. In particular, we derive the
following formula (see Fig. 11 and Example 4.7) for the analytic orthoscheme
volume formula f :

f = Ref + i Imf

= (vol〈235678910〉+ vol〈1478〉) + (vol〈15678〉+ vol〈478910〉)
= (volume of a Lambert cube +volume of a tetrahedron with 2 opposite

non-rectangular dihedral angles) + (volume of two half lunes with

quadrangle sections 〈5678〉 and 〈78910〉),
for either a clockwise or counterclockwise approach.

2. Lobachevsky function and Vinberg formula

The volumes of some polyhedra in the hyperbolic space Hn are functions of
dihedral angles expressed in terms of Lobachevsky function.

Following Milnor [10], we define the Lobachevsky function by the formula

∧(x) = −
∫ x

0

log |2 sin t|dt.

The function ∧ is odd, is periodic with period π, vanishes at points nπ
2 , reaches

its maximum at the points nπ + π
6 , and reaches its minimum at the points

nπ − π
6 . It is real analytic everywhere except at the points nπ, where its

derivative tends to ∞.
The function ∧(x) can be extended from the interval (0, π) to a multi-valued

analytic function Λ in the complex plane, branching at the points nπ. The
function Λ is connected to the Euler dilogarithm function,

(2) Li2(z) =
∞
∑

n=1

zn

n2
, |z| ≤ 1,

by the relation (see §10.4 of [12])

(3) Li2(e
2iz) =

π2

6
− z(π − z) + 2iΛ(z), Imz > 0.

By applying the Schwartz reflection principle to Λ(z+ π
2 ) and iΛ(iz+ π

2 ), we get
Λ(z+ π

2 )+Λ(−z+ π
2 ) = 0, where the function Λ is calculated on Imz < 0. Here
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the analytic multi-valued function Λ(z) is uniquely defined on the branch cut
C− ((−∞, 0) ∪ (π,∞)). Furthermore, we easily obtain Λ(z + π) = Λ(z) + zπi,
Imz > 0, from the formula (3). Hence 0 = Λ(−z)+Λ(z+π) = Λ(−z)+Λ(z)+
zπi, Imz > 0, so we get Λ(−z) + Λ(z) = −zπi, Imz > 0.

0 ππ-

Figure 1

If we send z to (0, π) from the upper half plane, then −z goes to (−π, 0)
from the lower half plane. Hence we want to determine the branch value of
Λ(x), x ∈ (−π, 0), as the analytic continuation along the contour depicted
in Fig. 1. Therefore we conclude Λ(−x) = −Λ(x) − πxi, x ∈ (0, π), and
Λ(x) = −Λ(−x) + πxi, x ∈ (−π, 0), i.e.,

(4)
Λ(x) = − ∧ (−x) + πxi, x ∈ (−π, 0),

= ∧(x) + πxi.

This relation shows that the difference between ∧(x) and Λ(z) on the clockwise
contour choice (see Fig. 1) for Λ(x), x ∈ (−π, 0), gives a real part ∧(x) and an
imaginary part πxi among multi-values. In this paper, we will use this branch
value determined by the clockwise contour choice. If the contour direction
is changed to a counterclockwise contour (going through upper half plane),
then we can easily show that Λ(x), x ∈ (−π, 0), has a real part ∧(x) and an
imaginary part −πxi.

Note also that the dilogarithm function Li2(z) pinches up 2πi log z addition-
ally as a branch effect for each clockwise contour around z = 1 starting and
ending at z. So Λ(z) has a 2πi

2i log e2iz = 2πiz branch effect for each clockwise
contour around z = 0. Whenever we consider Λ(z) with one more clockwise
full rotation contour around z = 0, we have to add up 2πiz for fixed z.

For a hyperbolic tetrahedron with all its vertices at infinity, the relation be-
tween dihedral angles implies that the dihedral angles corresponding to opposite
edges are equal. Denoting the different dihedral angles of such a tetrahedron
by α, β, γ, one also has α+ β + γ = π. The volume of such a tetrahedron T is
easily expressed as

(5) vol(T ) = ∧(α) + ∧(β) + ∧(γ).
All of the dihedral angles for a hyperbolic tetrahedron T with three vertices at
infinity are expressed in terms of the dihedral angles α, β, γ at the finite vertex
(see Fig. 2). The volume of such a tetrahedron is (see [1] or [14])

2vol(T )=∧(α)+∧(β)+∧(γ)+∧(α1)+∧(β1)+∧(γ1)−∧(α+ β + γ − π

2
),(6)

where α1 = π+α−β−γ
2 , β1 = π−α+β−γ

2 , γ1 = π−α−β+γ
2 .
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3. General tetrahedron volume formula with three ideal vertices

To consider the geometry of a general tetrahedron in projective space, we
will use the Kleinian metric on the usual affine coordinates chart containing
hyperbolic space as the unit ball. Then we can make an extended hyperbolic
space from the Kleinian metric on the affine charts (see [6]); see the many
elementary properties of the space in [6] and [3].

There are two kinds of extended hyperbolic space: the extended Kleinian
model Kn (or projective space model RPn

H) and the hyperbolic sphere model
SnH ; these extended hyperbolic spaces have generalized volume measures (µ-
measure in [6] and vol H in [3]) with complex values. In fact, the µ-measure
and vol H are the same measure.

From the definition of the volume in the extended hyperbolic space SnH ,
we can show one of the similarities between SnH and Sn, that is, volH(SnH)=
in · vol(Sn) (see [6]). If we change the contour type of the integral, we have a
different relation between volH(SnH) and vol(Sn).
When n = 3, we have volH(S3H)≡ i3 ·vol(S3) (mod 2i3 ·vol(S3)). More precisely,
whenever we consider S3H with one more full rotation clockwise contour, we have
to add up 2i3 · vol(S3) = −4π2i.

Naturally, the isometry group PO(n, 1) can be expected to preserve the
complex volume. In fact, we have the following proposition (see Proposition
3.2 in [6] for a proof, and see Theorem 3.6 in [5] for a more delicate boundary
condition).

Proposition 3.1. Let U be a domain with a piecewise analytic boundary

transversal to ∂Hn in extended hyperbolic space. Then volH(U) has a well-

defined finite value and volH(g(U)) = volH(U) for each g ∈ PO(n, 1).

In this paper, we need only five things among the geometric properties of
the extended hyperbolic space developed in [6] or [3]: an important and natural
property Proposition 3.1, which will be used implicitly in this paper; the volume
of a trihedron Tri (A,B,C) with dihedral angles A,B,C is represented as (see
[6])

(7) volH(Tri (A,B,C)) =
π

2
i(π −A−B − C),
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the basic angle definition (see Definitions 3.3, 3.6 and Fig. 12 in [3]); general-
ized trigonometry (see Theorem 4.13 in [3]); and the symmetric property (see
Theorem 4.1 in [6]). Henceforth, we will use vol(U) instead of volH(U) for the
sake of simplicity, since we can consider volH(U) as a generalization of vol(U).

Even though we draw a tetrahedron across the ideal boundary, we mostly
deal with the magnitudes of angles and lengths lying inside the hyperbolic space
in the paper, so we need not use the generalized definition (see [6] or [3]) of
angles and lengths for most cases in the paper. As an exception, we deal with
pure imaginary angles in the Lambert cube case and in Example 4.9.

We know the volume formula (6) for a hyperbolic tetrahedron with three
vertices at infinity and one hyperbolic vertex by Vinberg’s geometric technique.
Now, we derive and show the volume formula for a hyperbolic tetrahedron with
three vertices at infinity and one Lorentzian vertex below.

P

I

α

β

γ

α
1

β
1

γ
1

Figure 3

From Ushijima’s result [13], the volume of the polyhedron P obtained by the
truncation of the dual plane of the Lorentzian vertex of the tetrahedron with
three ideal vertices and one Lorentzian vertex (see P in Fig. 3) is represented
by the real part of an analytic function f that coincides with the volume of a
tetrahedron in the usual hyperbolic tetrahedron case.

Hence, we need only to change ∧ to Λ in the formula (6), where we need
to check one more fact that all the values inside the parenthesis must be in-
side (0, π) in the usual hyperbolic tetrahedron case. Also, note that the two
functions Λ and ∧ have the same real values without imaginary parts for
α, β, γ, α1, β1, γ1, but Λ(α+β+γ−π

2 ) 6= ∧(α+β+γ−π
2 ). If we pull the non-ideal

vertex out to outside Hn, then the value α+β+γ−π
2 will change from + to −, so

we get

(8) Λ(
α+ β + γ − π

2
) = ∧(α+ β + γ − π

2
) + πi(

α+ β + γ − π

2
)
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for the clockwise contour choice (see Fig. 1) by formula (4). Formula (8) also

shows the continuity property of Λ(α+β+γ−π
2 ) at the singular points.

Therefore, we know

2vol(P )

= Re(Λ(α) + Λ(β) + Λ(γ) + Λ(α1) + Λ(β1) + Λ(γ1)− Λ(
α+ β + γ − π

2
))

= ∧ (α) + ∧(β) + ∧(γ) + ∧(α1) + ∧(β1) + ∧(γ1)− ∧(α + β + γ − π

2
),

where α1 = π+α−β−γ
2 , β1 = π−α+β−γ

2 , γ1 = π−α−β+γ
2 .

Furthermore, we know the trihedron volume formula (7), so we obtain the
volume of the polyhedron I, which is half the volume of a trihedron. The
trihedron has three dihedral angles α, β, γ, so we get the following formula

vol(I) =
π

4
i(π − α− β − γ).

Finally, we conclude the following formula by (8):

(9)

2(vol(P ) + vol(I))

= ∧ (α) + ∧(β) + ∧(γ) + ∧(α1) + ∧(β1) + ∧(γ1)− ∧(α+ β + γ − π

2
)

+
π

2
i(π − α− β − γ)

= Λ(α) + Λ(β) + Λ(γ) + Λ(α1) + Λ(β1) + Λ(γ1)− Λ(
α+ β + γ − π

2
).

Additionally, we remark that we gave the volume of I as a unique value.
Basically, there is a difficulty in the valuation of I, since the volume of I can
take multi-values from the viewpoint of the analytic function approach (using
the Schläfli formula), so we have to choose one proper value among multi-
values. However, we fixed the analytic continuation direction as the clockwise
direction for the function Λ and the extended hyperbolic space, so we can get
only one value for each geometric object in hyperbolic space. The unique value
property is one good aspect of extended hyperbolic space.

We conclude the following theorem.

Theorem 3.2. For a given tetrahedron inside H3 with three ideal vertices, if we

move the non-ideal vertex out continuously from inside to outside of H3, then

the volume formula is expressed by an analytic multi-valued function (9). The

analytic function will take a unique value for a contour choice, and only when

the moving vertex is on the ideal boundary ∂H3, the function is not analytic

but continuous at that point.

Remark 3.3. For a counterclockwise analytic continuation direction for the
function Λ and the extended hyperbolic space, we can also obtain the same
formula (9). However, we have the following different formulas instead of (8)
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and the volume of I,

Λ(
α+ β + γ − π

2
) = ∧(α + β + γ − π

2
)− πi(

α+ β + γ − π

2
),

vol(I(A,B,C)) = −π

4
i(π −A−B − C).

The difference of ± sign does not have any effect on formula (9).
In order to handle a more general contour case, we have to find the contour

effect of Λ(α+β+γ−π
2 ) and vol(I(A,B,C)). The polyhedron I has a vertex in

the Lorentzian part, and the bottom triangle S is located in the hyperbolic part
(see Fig. 3), so we can calculate the volume of I by using contour integration
and the multiple integration of Theorem 4.1 of [6].

By contour integration, we obtain

(10)
vol(I) = vol(S3H)× vol(S)

vol(S2H)
=

kπiS

4
=

kπi

4
(π −A−B − C),

k = . . . ,−5,−3,−1, 1, 3, 5, . . . .

Whenever we consider one more full clockwise rotation contours for vol(I), we
have to add up πi

2 (π − A − B − C) for the given value. We already explained

the contour effect of Λ(z) in Section 2. The full rotation effect of Λ(α+β+γ−π
2 )

is 2πi(α+β+γ−π
2 ) = πi(α+ β + γ − π).

Finally, we have the following relation for any contour (k an odd integer):

vol(P ) + vol(I)

=
1

2
(∧(α) + · · ·+ ∧(γ1)− ∧(α+ β + γ − π

2
) +

kπi

2
(π − α− β − γ)),

=
1

2
(Λ(α) + Λ(β) + Λ(γ) + Λ(α1) + Λ(β1) + Λ(γ1)− Λ(

α+ β + γ − π

2
)).

Therefore, we conclude that if we fix the contour type in the calculation of the
extended hyperbolic space and Λ(z), then the volume of a tetrahedron of the
type of Theorem 3.2 and the analytic function (9) have exactly the same value
among the multi-values.

In the Appendix, we provide another elementary proof of Theorem 3.2. In
this proof, we do not use Ushijima’s result, but only elementary geometric
properties of extended hyperbolic space.

4. Volume formula of a general tetrahedron whose vertices are

lying outside H3

We extend its 5 edges of a given compact hyperbolic tetrahedron to ideal
points, as given in Fig. 4, to obtain an ideal polyhedron with six vertices. This
ideal polyhedron was already handled in [4].

The volume of the given tetrahedron 〈abcd〉 can be derived from the following
formula:

(11) vol〈abcd〉 = vol〈a123〉+ vol〈b456〉+ vol〈cd2356〉 − vol〈123456〉.
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The dihedral angles of each piece are shown in Fig. 5, where

(12) P +Q = B, R+ S = B′, Q+R+ T = π + C′, P + S + T = π + C,

and we obtain one more relation from the Gram matrix condition of the poly-
hedron 〈cd2356〉 with eliminations of one row and one column (see [4]),

(13)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 − cosA′ − cosP cosB cosC
− cosA′ 1 cos(R+ T ) cosC′ cosB′

− cosP cos(R + T ) 1 − cosQ cos(S + T )
cosB cosC′ − cosQ 1 − cosA
cosC cosB′ cos(S + T ) − cosA 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.
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It is well known (see [11]) that the system (12), (13) has two solutions
(P1, Q1, R1, S1, T1) and (P2, Q2, R2, S2, T2) induced from a quadratic equation,
and we also know (see [4]) that

(14)

2vol(T ) = ∧ (P1)− ∧(Q1) + ∧(R1)− ∧(S1)

− ∧(B − C −A+ π

2
−Q1) + ∧(A

′ −B − C′ + π

2
+Q1)

+ ∧(B
′ − C −A′ + π

2
−R1)− ∧(A−B′ − C′ + π

2
+R1)

− ∧(P2) + ∧(Q2)− ∧(R2) + ∧(S2)

+ ∧(B − C −A+ π

2
−Q2)− ∧(A

′ −B − C′ + π

2
+Q2)

− ∧(B
′ − C −A′ + π

2
−R2) + ∧(A−B′ − C′ + π

2
+R2),

where the solutions (P1, Q1, R1, S1, T1) and (P2, Q2, R2, S2, T2) of the equations
(12) and (13) are chosen so that the value of (14) is positive.

We can represent (14) simply as

vol(T ) = f(A,B,C,A′, B′, C′, P1, Q1, R1, S1, T1)

− f(A,B,C,A′, B′, C′, P2, Q2, R2, S2, T2).

Note that the function f is a continuous and real analytic function with
singularity, and vol(T ) 6= 0 for all non-degenerate hyperbolic tetrahedra, which
implies that the quadratic equation always has two distinct solutions. Hence,
we can conclude that the solutions (P1, Q1, R1, S1, T1) and (P2, Q2, R2, S2, T2)
are continuous functions of variables A,B,C, A′, B′, C′, and that each solution
has a unique expression.

2
d

c

b
a

6

5

4

3

1

Figure 6

Now we consider a more general situation. Let us imagine that the hyper-
bolic point a in Fig. 4 is continuously passing through the ideal boundary to
be in the Lorentzian part, as in Fig. 6. Then, we get a tetrahedron 〈abcd〉
with 3 hyperbolic points and 1 Lorentzian point. Hence the volume of the one
vertex outside the tetrahedron 〈abcd〉 is also represented by the same formula
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(11) and the dihedral angles of each piece also have the same expression as in
Fig. 5 with the same conditions (12), (13).

Note that the solution (P,Q,R, S, T ) we want comes from the genuine shape
of the polyhedron 〈cd2356〉, so all terms inside of the Lobachevsky functions
∧ appearing in the expressions of vol〈b456〉, vol〈cd2356〉, vol〈123456〉 have val-

ues in (0, π). However, the inside value α+β+γ−π
2 of ∧(α+β+γ−π

2 ) appearing in
vol〈a123〉 lies in (−π, π), so it must pass through the singular point 0, but if all
real Lobachevsky functions are changed to complex analytic Lobachevsky func-
tions, then every two corresponding polyhedra in Figs. 4 and 6 have the same
analytic representation by Theorem 3.2. In fact, we need one more argument,
that is, vol〈cd2356〉 to be analytically represented. The polyhedron 〈cd2356〉
with given dihedral angles variables could be divided into three tetrahedra with
six unknown variables. Then ideal conditions (which give 4 formulas) and the
coincidence conditions (which give 2 formulas) between two facial angles of
pieces at the finite vertex suffice the remaining six conditions. We can show
that the six unknown variables are uniquely analytically represented. Therefore
vol〈cd2356〉 is analytically represented.

Now we will explain property of volume continuity (see Fig. 7) on extended
hyperbolic space.

(a)

a

A′

B′

C ′

A
B

C

A′

B′

C ′

A
B

C

(c)(b)

Figure 7

From the compact case Fig. 7(a) to the one ideal vertex case Fig. 7(b), the
continuity of volume is well known. If we divide the tetrahedron shown in
Fig. 7(c) into two pieces by cutting, using a dual plane a⊥, then the upper part
has a volume represented by πi

4 (π−A−B−C), so the value moves continuously
from (b) to (c), and the lower part naturally has the continuous volume change
property as well. One can imagine three vertices at the triangle a⊥ ∩ 〈abcd〉 in
(c) go to a single ideal point continuously in (b).

There is one more thing to explain from the property of volume continu-
ity. While one vertex is moving from inside to outside, we have to show that
the choice of (P,Q,R, S, T ) is uniquely expressed by one formula of variables
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A,B,C, A′, B′, C′ between two solutions of a quadratic equation. This is con-
firmed by the continuity of the volume of the tetrahedron as one vertex moves
freely from inside to outside. The volume of the tetrahedron never goes to 0,
so two choices of the solution always give different values, and hence there are
two leaves (non-intersecting each other) of values for their choices.

Consequently we can conclude the following theorem.

Theorem 4.1. For a hyperbolic tetrahedron with six dihedral angle variables, if

we move one vertex out continuously from inside to outside of H3, then the vol-

ume formula is expressed by the same analytic multi-valued function. This ana-

lytic function takes a unique value determined by a clockwise (counterclockwise
resp.) contour choice and this choice coincides with the volume of the tetrahe-

dron in the fixed extended hyperbolic space choice coming from the clockwise

(counterclockwise resp.) construction. When only the moving vertex is on the

ideal boundary ∂H3, the volume function is not analytic but is continuous at

the point.

Remark 4.2. For this theorem, we can simply say

a multi-valued analytic function f := vol(tetrahedron)

which implies that

f = volume of truncated tetrahedron + half volume of trihedron.

Note that f takes different values for clockwise or counterclockwise contour,
also the trihedron has different values:

vol(Tri (A,B,C)) = ±π

2
i(π −A−B − C),

where for clockwise continuation we choose +, and for counterclockwise con-
tinuation we choose −.

Now we consider more general cases. If other vertices move from inside to
outside of H3 with the condition that every edge always intersects H3 while the
vertices are moving, then we can show a result similar to that of Theorem 4.1
by the following argument.

Now we always assume the edge intersection (to H3) condition above for all
cases. If two vertices of the tetrahedron lie outside H3, then we can apply a
similar method, as before. We remark that the only a difference between the
two situations is that the vertex b in Fig. 6 is located outside of the extension
of edge 〈14〉. However, this method cannot be applied to the cases of three or
four Lorentzian vertices, so we will introduce a more general argument. Let
us consider two tetrahedra, one (W in Fig. 8) has 4 hyperbolic points and
the other (V in Fig. 8) has 3 or 4 Lorentzian vertices. Then we divide each
tetrahedron into two pieces of tetrahedron with one equal dihedral angle A

2 (see
Fig. 8). Here we should determine two dihedral angles x and y for two different
cases. The vertex 3 becomes a hyperbolic point or a Lorentzian point in each
case.
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If vertex 3 is a hyperbolic point, then we obtain a spherical triangle with
angles A,B,C (see Fig. 9) by a small sphere cutting at vertex 3. Then the
dihedral angle x becomes a subdivided angle x in the spherical triangle (see
Fig. 9), so the spherical cosine law induces two formulas

cos c =
cosA cosB + cosC

sinA sinB
and cos c =

cos A
2 cosB + cosx

sin A
2 sinB

.

Hence, we obtain

(15) cosx =
sin A

2

sinA
(cosA cosB + cosC)− cos

A

2
cosB.

If vertex 3 is a Lorentzian point, then we obtain a hyperbolic triangle with
angles A,B,C (see Fig. 9) by slicing with the dual plane 3⊥. Then the angle
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x is obtained using the hyperbolic cosine law, so we have

cosh c =
cosA cosB + cosC

sinA sinB
and cosh c =

cos A
2 cosB + cosx

sin A
2 sinB

.

Hence we obtain the same formula (15).
If vertex 3 is an ideal point, then we know x = π −B − A

2 which is induced
from the formula (15) as well, with an additional condition C = π − A − B.
We note that cos−1 z = −i log(z + (z2 − 1)1/2), and hence the angles x =
cos−1(· · · ) and y = cos−1(· · · ) are represented by analytic functions x(A,B,C)
and y(A,B,C) of variables A,B,C for all cases.

Therefore the tetrahedron 〈1234〉 with dihedral angles A,B,C,A′, B′, C′ in
Fig. 8 is divided into two tetrahedra, and the corresponding angles of each
piece have the same analytic representation for their original dihedral angles
A,B,C,A′, B′, C′. Precisely,

vol(A,B,C,A′, B′, C′) = vol(
A

2
, B, x(A,B,C), A′, π − y(A,B′, C′), C′)

+ vol(
A

2
, B′, y(A,B′, C′), A′, π − x(A,B,C), C).

Then the two tetrahedra 〈12′34〉 and 〈1′234〉 from V in Fig. 8 have 1 or 2
hyperbolic point and 3 or 2 Lorentzian points. We repeat this process for each
piece of the tetrahedra to obtain 8 tetrahedral pieces from V andW . Then their
corresponding dihedral angles have the same analytic representation. Each
piece of V has 3 hyperbolic points and 1 Lorentzian point, and each piece
of W has 4 hyperbolic points naturally. Finally we conclude that the two
original tetrahedra have the same analytic volume formula by comparing of
the two corresponding subdivided tetrahedra. Note that the corresponding
two subdivided tetrahedra have the same analytic volume representation by
Theorem 4.1.

Consequently we have the following theorem.

Theorem 4.3. For a hyperbolic tetrahedron with six dihedral angle variables,

if we move vertices out continuously from inside to outside of H3 keeping every

edge of the tetrahedron intersecting the hyperbolic space H3, then the volume

formula is expressed by the same analytic multi-valued function. This analytic

function takes a unique value for a clockwise (counterclockwise resp.) contour

choice, and this choice coincides with the volume of the tetrahedron of the fixed

extended hyperbolic space defined from the clockwise (counterclockwise resp.)
contour. When the moving vertex is on the ideal boundary ∂H3, the volume

function is not analytic but is continuous at the point.

Remark. Under the same geometric conditions of Theorem 4.3, if we are able
to analyze formula (14) (additionally we need an analytic change of ∧ → Λ
in the formula), then Theorem 4.3 can be proved more directly without using
Theorem 3.2 and Theorem 4.1.
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For example, if we move the vertex a in Figure 4 to outside of H3, then we
can easily guess that P2 and B−C−A+π

2 −Q2 in formula (14) change their signs,
and we get the following imaginary value from the clockwise contour effect of
Λ:

πi(−P2 +
B − C −A+ π

2
−Q2) = πi(

π −A−B − C

2
).

Hence, this shows Theorem 4.1 more directly. However, in order to induce
the same results as the Theorem, we have to prove −π < P2 < 0 and −π <
B−C−A+π

2 − Q2 < 0 for the vertex a outside case. Even though we can show

that P2 and B−C−A+π
2 − Q2 take real values from the technique of Lemma

in [11, p. 384], it looks hard to prove the very complicated inequalities, in
particular, B−C−A+π

2 − Q2 < 0. For other cases, we also need to show many
complicated inequalities. Hence, we leave the direct proof as a problem to be
solved.

From Theorem 4.3 we conclude that all analytic volume formulas f of a
hyperbolic tetrahedron (readers can see one nice formula in [11]) can also be
applicable to a tetrahedron with vertices in the Lorentzian part with the edge-
intersecting condition. Furthermore, we get the following corollary similar to
Remark 4.2.

Corollary 4.4. We can see the following geometric interpretation of the ana-

lytic tetrahedron volume formula f with the same condition as Theorem 4.3.

(16)
f = Ref + i Imf

= volume of truncated tetrahedron+ half volume of trihedra

= volume of truncated tetrahedron+
πi

4
(total area of the truncated faces).

Note that if we change the contour choice from clockwise to counterclockwise,

then we have to change πi
4 to −πi

4 in (16). For a more general contour, we

can also see the coincidence of the branch effect between the analytic function f
and the tetrahedral volume integration on S3H . We obtain the following relation

for an odd integer k :

f = volume of truncated tetrahedron+
kπi

4
(total area of the truncated faces).

Although a formula similar to (16) was first mentioned in [6], where we
used the volume of the tetrahedron instead of the complex analytic multi-valued
function f , we could not derive the following corollary, because we could not
analyze the multi-valued function f and could not find the geometric meaning
of that.

Corollary 4.5 (cf. Kellerhals [8], Usijima [13]). For the analytic tetrahedron

volume formula f with the same condition as Theorem 4.3, we have

Ref = volume of truncated tetrahedra.
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Note that Kellerhals also considered the Lambert cube case. The Lambert
cube requires a more general situation than our result, namely, that one edge
of a tetrahedron must be located entirely outside H3.

Now we can reconfirm Theorem 4.3 for the following examples. An or-
thoscheme T (A,B,C) is a tetrahedron with three consecutive dihedral angles
A,B,C and three consecutive rectangular angles. We know that

vol(T (A,B,C)) =
1

4
(∧(A + δ)− ∧(A − δ) + ∧(C + δ)− ∧(C − δ)

− ∧(π
2
−B + δ) + ∧(π

2
−B − δ) + 2 ∧ (

π

2
− δ)),

where δ = tan−1

√
cos2 B−sin2 A sin2 C

cosA cosC .

i)

A
B

C

ii)

A B

C

I

T1

iii)

A B

C

I

T

I

1

2

2

iv)

Figure 10

Kellerhals [8] showed that for one- or two-vertex truncated orthoschemes
T1, T2, the volumes (see ii) and iii)) vol(T1(A,B,C)), vol(T2(A,B,C)) have the
same representation of vol(T (A,B,C)).

Example 4.6. For the corresponding complex analytic function f of the or-
thoscheme formula, i.e.,

f =
1

4
(Λ(A+ δ)− Λ(A− δ) + Λ(C + δ)− Λ(C − δ)

− Λ(
π

2
−B + δ) + Λ(

π

2
−B − δ) + 2Λ(

π

2
− δ)),
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we have the following for case ii)

f =
1

4
(∧(A+ δ)− (∧(A − δ) + πi(A− δ)) + ∧(C + δ)− ∧(C − δ)

− ∧(π
2
−B + δ) + (∧(π

2
−B − δ) + πi(

π

2
−B − δ)) + 2 ∧ (

π

2
− δ))

=
1

4
(∧(A+ δ)− ∧(A− δ) + ∧(C + δ)− ∧(C − δ)− ∧(π

2
−B + δ)

+ ∧(π
2
−B − δ) + 2 ∧ (

π

2
− δ)) +

πi

4
(
π

2
−A−B)

= vol(T1) + vol(I),

where the most angle values remain in (0, π) so that Λ and ∧ have the same
values except for A− δ and π

2 −B − δ which take values from + to − when i)
changes to ii).

We have the following for case iii)

f =
1

4
(Λ(A+ δ)− Λ(A− δ) + Λ(C + δ)− Λ(C − δ)− Λ(

π

2
−B + δ)

+ Λ(
π

2
−B − δ) + 2Λ(

π

2
− δ))

=
1

4
(∧(A + δ)− (∧(A − δ) + πi(A− δ))+ ∧(C + δ)− (∧(C − δ)+ πi(C − δ))

− ∧(π
2
−B + δ) + (∧(π

2
−B − δ) + 2πi(

π

2
−B − δ)) + 2 ∧ (

π

2
− δ))

= vol(T2) +
πi

4
(
π

2
− A−B) +

πi

4
(
π

2
−B − C)

= vol(T2) + vol(I1) + vol(I2),

where A−δ and C−δ change from + to −, and π
2 −B−δ changes + → − → +

when i) → ii)→ iii), other values are remaining at (0, π).

Now we consider a more general situation than that of Theorem 4.3. We
take a Lambert cube LC with dihedral angles A,B,C, and then we extend
the four faces of the Lambert cube. Finally, we obtain a tetrahedron in the
extended hyperbolic space (see Fig. 11). Then edge 〈14〉 is lying outside ∂H3,
so the dihedral angle will have a negative pure imaginary value with respect to
the (clockwise contour) definition of the dihedral angle (see Definitions 3.3, 3.6
and Fig. 12 in [3]). The value b is the distance between two faces 〈2589〉 and
〈36710〉 and is the same as the length of edge 〈78〉.

Now let us compare the analytic function f (for the volume of a hyperbolic
orthoscheme) and the volume integration (for the orthoscheme whose one edge
〈14〉 is lying outside ∂H3) in the extended hyperbolic space.

Example 4.7. From the orthoscheme formula f in Example 4.6, we get the
orthoscheme analytic function with three dihedral angles A,−ib, C.

f(A,−ib, C) =
1

4
(Λ(A+ δ)− Λ(A− δ) + Λ(C + δ)− Λ(C − δ)
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− Λ(
π

2
+ ib+ δ) + Λγ(

π

2
+ ib− δ) + 2Λ(

π

2
− δ)),

where δ = tan−1

√
cosh2 b−sin2 A sin2 C

cosA cosC .
By observation of the contour chasing in Example 4.6, we have to replace

(see Fig. 12)

Λ(A− δ) → ∧(A− δ) + πi(A− δ),

Λ(C − δ) → ∧(C − δ) + πi(C − δ),

Λγ(
π

2
+ ib− δ) → Λ(

π

2
+ ib− δ) + 2πi(

π

2
+ ib− δ),

so we obtain

f =
1

4
(∧(A + δ)− ∧(A − δ) + ∧(C + δ)− ∧(C − δ)− Λ(

π

2
+ ib+ δ)

+ Λ(
π

2
+ ib− δ) + 2 ∧ (

π

2
− δ)) +

πi

4
(π −A− C + 2ib).

+ extra term

Figure 12

Now let us calculate the integral volume of the tetrahedron 〈1234〉 in the
extended hyperbolic space. We know easily that the polyhedra 〈15678〉 and
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〈478910〉 are the half of lune with quadrangle section, and the tetrahedron
〈1478〉 has two opposite dihedral angles −ib, π − B and other rectangular
dihedral angles.

We know that

vol〈15678〉 = πi

4
(2π − π

2
− π

2
− π

2
−A) =

πi

4
(
π

2
−A),

vol〈478910〉 = πi

4
(
π

2
− C),

vol〈1478〉 = − i

2
(π −B)(−ib) =

b(B − π)

2
.

Note that the last formula can be obtained by the symmetric property of the
extended hyperbolic space. A tetrahedron with two opposite dihedral angles
A,B and other rectangular dihedral angles has a volume of A

2π × B
2π ×vol(S3H) =

− i
2AB (spherical case, A

2π × B
2π × vol(S3) = 1

2AB). By direct integration, we
can also obtain the same result.

lim
ǫ→0

∫

〈1478〉

dx ∧ dy ∧ dz

(d2ǫ − (x2 + y2 + z2))2
= lim

ǫ→0

∫ z0

0

∫ α

0

∫ ∞

0

r

(d2ǫ − (r2 + z2))2
drdθdz

= lim
ǫ→0

α

2

∫ z0

0

dz

z2 − d2ǫ

= −bα

2
,

where we locate the edge 〈78〉 on interval [0, z0] of the z-coordinate, and z0 =
tanh b is the z-coordinate value corresponding to the edge length b, and α =
π −B.

We know the volume of a Lambert cube LC(A,B,C), i.e., the polyhedron
〈235678910〉, by Kellerhals result [8].

vol(LC) =
1

4
(∧(A + δ)− ∧(A− δ) + ∧(B + δ)− ∧(B − δ) + ∧(C + δ)

− ∧(C − δ) + 4 ∧ (
π

2
− δ)− 2 ∧ (δ)),

where δ = tan−1

√
cosh2 b−sin2 A sin2 C

cosA cosC .
Hence the volume of the tetrahedron 〈1234〉 can be obtained by summing

up the volumes of the four polyhedra, so we get finally

4(vol〈1234〉 − f(A,−bi, C))

= 2bB + Λ(
π

2
+ ib+ δ)− Λ(

π

2
+ ib− δ) + ∧(δ +B) + ∧(δ −B)− ∧(2δ)

=: g(b, B),

where tanB = tanh b tan δ. We know that sin(δ+B) sin(δ−B) = sin2 δ−sin2 B,

cos(ib + δ) cos(ib − δ) = cos2 δ + sinh2 b, sinh2 b = cos2 δ sin2 B
sin2 δ−sin2 B , and tanB =
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tanh b tan δ ⇔ 2b = log sin(δ+B)
sin(δ−B) . Hence, we get g(0, 0) = 0 and

∂g

∂B
= −δB log

sin(δ+B) sin(δ−B) sin(
π
2 +ib+δ) sin(

π
2 +ib−δ)

sin2 δ cos2 δ + 2b+ log sin(δ−B)
sin(δ+B) = 0,

∂g

∂b
= −δb log

sin(δ+B) sin(δ−B) sin(
π
2 +ib+δ) sin(

π
2 +ib−δ)

sin2 δ cos2 δ + 2B + i log cos(ib−δ)
cos(ib+δ) = 0.

Finally, we get vol〈1234〉 = f(A,−bi, C) for clockwise contour chasing, and
conclude that the analytic orthoscheme formula gives the volume of the gener-
alized orthoscheme on S3H while permitting the one-edge outside condition.

Furthermore, we get the same conclusion for counterclockwise contour chas-
ing. For the counterclockwise version of the angle definition, we have to change
−ib → ib, f(A,−ib, C) → f(A, ib, C), for the counterclockwise contour chas-
ing of the analytic volume function, we have to change ∧(A − δ) + πi(A −
δ) → ∧(A − δ) − πi(A − δ), ∧(C − δ) + πi(C − δ) → ∧(C − δ) − πi(C − δ),
Λγ(

π
2 +ib−δ) = Λ(π2 +ib−δ)+2πi(π2 +ib−δ) → Λγ(

π
2 −ib−δ) = Λ(π2 −ib−δ)−

2πi(π2 −ib−δ), and from the counterclockwise volume definition of the extended

hyperbolic space, we have to change vol〈15678〉 = πi
4 (

π
2 − A) → −πi

4 (
π
2 − A),

vol〈478910〉 = πi
4 (

π
2 − C) → −πi

4 (
π
2 − C), vol〈1478〉 = − i

2 (π − B)(−ib) =
b(B−π)

2 → i
2 (π −B)(ib) = b(B−π)

2 . Hence, we get

4(vol〈1234〉 − f(A, bi, C))

= 2bB + Λ(
π

2
− ib+ δ)− Λ(

π

2
− ib− δ) + ∧(δ +B) + ∧(δ −B)− ∧(2δ)

=: k(b, B),

where tanB = tanh b tan δ.
Similarly, we conclude k(b, B) = 0 and vol〈1234〉 = f(A, bi, C) for counter-

clockwise contour chasing.

From the above argument, we summarize the results for clockwise(−) or
counterclockwise(+) contour chasing as follows:

f(A,∓bi, C) = vol〈1234〉
= vol(LC(A,B,C)) + vol〈15678〉+ vol〈478910〉+ vol〈1478〉,

and

(17)
Ref(A,∓bi, C) = vol(LC(A,B,C)) + vol〈1478〉,
Imf(A,∓bi, C) = vol〈15678〉+ vol〈478910〉.

Note that the formula Ref(A,−bi, C) in (17) is the same as one choice among
multi-values of Theorem 1 in [9]. In [9], Authors used ak = eiθk and a4 = el,
so they implicitly adopted the clockwise angle definition.

From now on we assume tetrahedra whose edges can be placed outside H
3,

but whose faces cannot be placed outside H3. Then we can divide a tetrahedron
into orthoschemes of types i), ii), iii) and iv).
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First, we draw a perpendicular from vertex 1 to the face 〈234〉 and assume
that the perpendicular foot 5 is lying on 〈234〉 ∩H3, then we get 3 tetrahedra
with 9 new dihedral angle variables: a1, a2, b1, b2, c1, c2 and x, y, z. At vertices
2, 3, 4, we can obtain ai, bi, ci from the perpendicularity condition (see Fig. 13).
If vertex 2 is a hyperbolic (or Lorentzian) point, then we obtain a spherical (or
hyperbolic) triangle (A,E, F ) obtained by a dual plane 2⊥ and the tetrahedron
〈1234〉 . The vertices of the hyperbolic triangle (A,E, F ) could be located
outside H

3, so we need general trigonometry. Note that the trigonometry of
general position works well (see [3]), and is the same as standard trigonometry.

Therefore, we easily get

(18)
cosE

sina1
=

cosF

sin a2
,
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for any (spherical or hyperbolic) type of triangle (A,E, F ). From (18) and
a2 = A− a1, we obtain

(19) a1 = cot−1(
cosA cosE + cosF

sinA cosE
),

and the formula (19) also works well for the case that the vertex 2 is an ideal
point. We know cot−1 z = 1

2i log
z+i
z−i , so A = 0 or E = π

2 implies a1 = 0
and does not disturb the analyticity of a1. We also get similar results for
b1, b2, c1, c2.

Second, if vertex 1 is a hyperbolic (or Lorentzian) point, then we also ob-
tain a spherical (or hyperbolic) triangle (A,B,C) (see Fig. 14). So we have
cosA cosB+cosC

sinA sinB = cosa2 cos b1+cos x
sin a2 sin b1

for any (spherical or hyperbolic) type of tri-

angle (A,B,C), hence x = cos−1( sin a2 sin b1
sinA sinB (cosA cosB+cosC)−cosa2 cos b1),

it works as well for an Euclidean triangle case, i.e., vertex 1 is an ideal point.
We know that cos−1 z = −i log(z + (z2 − 1)

1

2 ).
In this paper, we consider only non-degenerate tetrahedra. An ordinary

hyperbolic tetrahedron does not have a 0 dihedral angle. However, in our
consideration of non-degenerate tetrahedra, a 0 dihedral angle is possible, when
an edge of the tetrahedron is tangent to ∂H3. From formula (19), sin a1

sinA =
cosa1 cosE

cosA cosE+cosF → cosE
cosE+cosF , whenever A → 0 (then ai → 0). Also from

formula (18), we get sin a2

sinA → cosF
cosE+cosF , whenever A → 0. Therefore the

analyticity of the dihedral angles of x, y, z is not a problem, even for the edge-
tangent case.

Third, if we draw a perpendicular from 5 to the edge 〈23〉 and denote the
foot of the perpendicular as 6, then we obtain the additional line 〈16〉 perpen-
dicular to the edge 〈23〉. By considering some isometric transformation that
sends the triangle 〈234〉, the line 〈15〉, and the point 5 to the yz-plane, z-axis,
and center 0 of the Kleinian model, respectively, we get the desired perpen-
dicularity property. Then the angles d1, d2 in the generalized triangle 〈235〉
are obtained as the spherical length of S1F and FS2 (see Figs. 13 and 14),
so we have d1 = cos−1( cosa2

sinF ), d2 = cos−1( cos b1sinF ). Also, changing A → x,
a1 → x1, E → d1, and F → d2 at formula (19), we know the value x1 and
x2 = x − x1. Hence we can find an analytic expression of ai, bi, and xi with
variables the original dihedral angles A, . . . , F . Therefore we deduce two or-
thoschemes T (x1, a2, F ) and T (x2, b1, F ) with analytic expressions from the
tetrahedron 〈1235〉. Similarly, we can also divide the tetrahedra 〈1345〉 and
〈1245〉 individually into two orthoschemes, so we get the following relations:

vol〈1234〉 = vol〈1256〉+ vol〈1356〉+ · · ·+ vol〈1258〉
= f(x1, a2, F ) + f(x2, b1, F ) + · · ·+ f(z2, a1, E)

= f(A,B,C,D,E, F ),
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where the second equality is obtained by Examples 4.6 and 4.7, and the third
equality by the coincidence of two analytic functions at the usual hyperbolic
tetrahedron and an extension of the same kind of contour chase.

Additionally, we have to consider the case in which vertex 5 is located outside
the triangle 〈234〉 and is lying inside or outside of H3. The inside case (simply
denote as “5 ∈ H3”) will arise, if some dihedral angles of the tetrahedron
〈1234〉 are obtuse. If foot 5 of the perpendicular emanating from vertex 1
is lying outside of the triangle 〈234〉, then the original tetrahedron is easily
obtained by union of two tetrahedra minus one tetrahedron with a common
perpendicular edge or one tetrahedra minus two tetrahedra with a common
perpendicular edge, so we can solve the obtuse problem. Actually, we have
to explain analyticity at each divided dihedral angle, however we will omit
this, since the method is similar to the comparison technique described around
Fig. 8. Furthermore, we have to consider the remaining case 5 /∈ H3: If one
dihedral angle is not 0, then we can apply the same dividing method described
in Fig. 8 and we can obtain one hyperbolic vertex for each divided piece, so we
can transform this case to 5 ∈ H3 case, and if all dihedral angles are 0, then
the tetrahedron becomes a regular tetrahedron and the case becomes 5 ∈ H3

case. Hence we finish the checking of the two cases: 5 ∈ H3 case and 5 /∈ H3

case.
In order to complete the proof of the following theorem, we have to check the

analyticity of the orthoscheme volume function f(A,B,C) from iii) to iv) of
Fig. 10. From the well-known dihedral angle condition of an orthoscheme and
Lambert cube, the value inside of Λ(·) does not touch the singular point 0, π, so
we need to examine only the singular case B = 0 between iii) and iv), at which
the edge 〈14〉 is tangent to the ideal boundary ∂H3. If the analytic function
Λ(·) of f(A, 0, C) touches the singular position, i.e., A,C = ±δ or π ± δ, then
A = π

2 or C = π
2 are easily obtained. Then the orthoschemes f(π2 , 0, C) and

f(A, 0, π2 ) (for example, whose four vertices are (0, 0, 0), (p, 0, 0), (0,∞, 0), and
(0, 0, 1) in the extended Kleinian model) become the case of one vertex lying
on the ideal boundary. That is a situation where both the vertex ideal and
edge tangent cases arise, simultaneously. Furthermore, we must consider the
degenerate (i.e., flat) orthoscheme f(π2 , 0,

π
2 ), which becomes a non-singular

case by easy calculation. Therefore, the genuine edge-tangent case without the
vertex ideal condition is not a singular but an analytic case.

Therefore, we conclude the following theorem.

Theorem 4.8. For a hyperbolic tetrahedron with six dihedral angle variables,

if we move vertices out continuously from inside to outside of H3 keeping every

face of the tetrahedron intersecting the hyperbolic space H3, then the volume

formula is expressed by the same analytic multi-valued function. This analytic

function takes a unique value for a clockwise (counterclockwise resp.) contour

choice, and this choice coincides with the volume of the tetrahedron of the fixed

extended hyperbolic space defined from the clockwise (counterclockwise resp.)
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contour. When the moving vertex is on the ideal boundary ∂H3, the volume

function is not analytic but is continuous at the point. In particular, at the

edge-tangent case (i.e., when the dihedral angle at the edge is 0) the volume

function of dihedral angle variables is analytic.

Now we examine the volume of a regular tetrahedron under the face-inter-
secting condition.

Example 4.9. From example 1 in [4], we know the volume formula of a regular
tetrahedron with dihedral angle A, so we can obtain the analytic function f(A)
of the regular tetrahedron.

f(A) = 2Λ(
A+ w

2
)− 2Λ(

A− w

2
) + Λ(

π − 2A− w

2
) + Λ(

π + 2A− w

2
)

− Λ(
π + w

2
) + Λ(

π − w

2
),

where w = cos−1(1−cosA
2 cosA ).

First, we consider the real dihedral angle case. The dihedral angle A takes
its value from the interval [0, cos−1 1

3 ), more precisely A = cos−1 1
3 (Euclidean

tetrahedron, i.e., one point in hyperbolic space) → A = π
3 (4 ideal vertices

case) → A = 0 (hyperideal, i.e., all edges tangent to ∂H3).
We can check that w, A−w

2 , and π−2A−w
2 move along 0 → π

3 → π
2 , + → 0 →

−, and + → 0 → +, respectively. Only 2 terms A−w
2 and π−2A−w

2 touch the
singular value. Hence, we can obtain

Λ(
A− w

2
) = ∧(A− w

2
) + πi(

A− w

2
),

Λ(
π − 2A− w

2
) = ∧(π − 2A− w

2
) + 2πi(

π − 2A− w

2
),

and finally, we get the following formula for A ∈ [0, π
3 ]:

f(A) = 2 ∧ (
A+ w

2
)− 2 ∧ (

A− w

2
) + ∧(π − 2A− w

2
) + ∧(π + 2A− w

2
)

− ∧(π + w

2
) + ∧(π − w

2
) + πi(π − 3A)

= Ref(A) + πi(π − 3A).

Note that the Lobachevsky function ∧(·) always takes real values. Also, we
already know the following formula for A ∈ [π3 , cos

−1 1
3 ]:

f(A) = 2 ∧ (
A+ w

2
)− 2 ∧ (

A− w

2
) + ∧(π − 2A− w

2
) + ∧(π + 2A− w

2
)

− ∧(π + w

2
) + ∧(π − w

2
)

= Ref(A).

For the case A = 0, every edge is tangent to the ideal boundary ∂H3 and
hence the tetrahedron is hyperideal. If we truncate 4 tetrahedra for each vertex
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with its dual plane, then the remaining tetrahedron is a regular ideal octahe-
dron. All dihedral angles of the octahedron are π

2 , so the tetrahedron with all
0 dihedral angles has a volume of

vol(regular ideal octahedron) + 4× πi

4
(π − 0− 0− 0) = 8 ∧ (

π

4
) + π2i.

In fact, the volume of the 0 dihedral angle tetrahedron is also obtained from
the above analytic function f(A).

f(0) = 2 ∧ (
w

2
)− 2 ∧ (

−w

2
) + ∧(π − w

2
) + ∧(π − w

2
)− ∧(π + w

2
) + ∧(π − w

2
)

+ π2i,

= 8 ∧ (
π

4
) + π2i,

where w = cos−1 0 = π
2 . Note that, for A = 0, the inside 6 values of ∧(·)

become ±π
4 ,

3π
4 , so they never touch the singular value 0, π, hence we can

check the analyticity of the edge tangent case one more time.
Second, we consider the pure imaginary dihedral angle case. The dihedral

angle A takes values from the interval [0,−∞i), more precisely A = 0 (hy-
perideal case) → A = −ib → A = −∞i, and then w moves along π

2 → 2π
3 .

Only 2 terms −ib−w
2 , π+2ib−w

2 still have to be considered; the value −ib−w
2 does

not cross the branch cut of Λ(z), since the values moves along + → clockwise
around 0 → − → −ib−w

2 . By the contour chasing (γ′) of π+2ib−w
2 , we have the

following relation similar to Example 4.7 and Fig. 12:

Λγ′(
π + 2ib− w

2
) = Λ(

π + 2ib− w

2
) + 2πi(

π + 2ib− w

2
).

Hence we get (clockwise approach)

(20)
f(−ib)=2Λ(

−ib+w

2
)−2Λ(

−ib−w

2
)+Λ(

π+2ib−w

2
)+Λ(

π−2ib−w

2
)

− ∧(π+w

2
)+∧(π−w

2
)+πi(π+2ib−w), w=cos−1(

1−cosh b

2 cosh b
).

A regular tetrahedron with dihedral angle −ib is divided into 11 pieces of
a polyhedron by a dividing similar to that in the Lambert cube case in the
extended hyperbolic space (see Fig. 15).
From Theorem 4.8, we know f(−ib) = vol〈1234〉 = vol(a) + 4 × vol(b) + 6 ×
vol(c), and vol(b) = πi

4 (4π − 3π) = π2

4 i, vol(c) = − i
2 (−ib)(π − α) = − b

2 (π −
α), vol(a) = Ref(α). Here we can derive the relation between b and α, by
generalized trigonometry (see [3]) in the extended hyperbolic space for a dual
triangle by a polar dual truncation at vertex 1 and the face triangle 〈123〉
(see Fig. 16). Then we obtain cos θ = cosh2 b+cosh b

sinh2 b
= cos2 α+cosα

sin2 α
, and simply

cosα = cosh b
2 cosh b−1 and cosh b = cosα

2 cosα−1 .
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Figure 15
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-ib

(   -    )iπ α (   -    )iπ α

(   -    )iπ α

1

3

2

Figure 16

Therefore, we get

(21)

Ref(−ib) = Ref(α)− 3b(π − α),

Imf(−ib) = π2i, cosα =
cosh b

2 cosh b− 1
.

If we apply the following formula (which comes from (3)) to (20), we can
calculate the exact value of f(−ib).

Λ(
π

2
− δ + ib)− Λ(

π

2
+ δ + ib) =

∞
∑

n=1

(−1)n+1e−2nb

n2
sin 2nδ + 2δb, δ, b > 0.

Our method can be used to obtain the volume of a more general 4-valent
regular ideal polyhedron from some hyperideal polyhedron.

As one can easily imagine, in fact, we strongly believe that the analysis we
had in this paper can be extended to every type of tetrahedron in extended
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hyperbolic space. A complete investigation of the analyticity and branch prob-
lem of the volume formula for a tetrahedron in extended hyperbolic space will
be deferred to a subsequent paper.

(a) (b)

B
B′′

A
C

B′

C ′ A′

C′′ A′′

B
B′′

A
C

B′

C ′

A′

C′′
A′′

x

Figure 17

Now we introduce some elementary applications of our theorem. Suppose
we have a hyperbolic prism P with 9 dihedral angles (see Fig. 17). Then
P determines a unique trihedron obtained by extending the three faces. By
considering two upper (lower resp.) tetrahedra in this trihedron, we can easily
derive the following first (second resp.) relation about the volume of prism
P (A,B,C,A′, B′, C′, A′′, B′′, C′′) by Theorem 4.1:

(22)

volume of prism

= f(A,B,C,A′′, B′′, C′′)− f(A,B,C, π −A′, π −B′, π − C′)

= f(A,B,C,A′, B′, C′)− f(A,B,C, π −A′′, π −B′′, π − C′′).

Note that
πi

2
(π −A−B − C)

= f(A,B,C,A′, B′, C′) + f(A,B,C, π −A′, π −B′, π − C′)

= f(A,B,C,A′′, B′′, C′′) + f(A,B,C, π −A′′, π −B′′, π − C′′).

The above relation (22) can also be applied to other types of volume relation.
For example, if the upper and lower triangles in Fig. 17(a) intersect each other,
then we can obtain one prism and one tetrahedron (see Fig. 17(b)). Hence, we
can see the following relation:

P (A,B,C,A′, B′, C′, A′′, B′′, C′′)

= f(A,B,C,A′′, B′′, C′′)− f(A,B,C, π −A′, π −B′, π − C′)

= P (x,C′, C′′, A,B′′, B′, B,A′′, A′)− f(π −A′′, π −B′′, C, π −B′, π −A′, x),

where the dihedral angle x is obtained from the Gram matrix of the prism.
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One can also easily and naturally derive some other relations for simple
hyperbolic polyhedra without a dividing process. We expect that extended
hyperbolic space will provide a nice method of demonstrating the analyticity
of the volume of a given combinatorial type (convex) hyperbolic polyhedron.

5. Appendix

Now we supply another elementary proof of Theorem 3.2. In this proof,
we use only elementary geometric properties of the extended hyperbolic space,
without using the Ushijima’s result.

We know the volume formula (see (6)) for a hyperbolic tetrahedron with
three vertices at infinity and one hyperbolic vertex using Vinberg’s geometric
technique (see [1] or [14]). Similarly, we derive and show the volume formula
for a hyperbolic tetrahedron with three vertices at infinity and one Lorentzian
vertex below.

First, we consider a tetrahedron S with three ideal points 1, 2, 3 on one ideal
boundary and one Lorentzian point 0 (see Fig. 18), and we extend the lines
〈10〉, 〈20〉, 〈30〉 to the other ideal boundary (which is different from the first
one) points and denote them as 1′, 2′, 3′, respectively. Then we can construct an
octahedron with eight faces 〈123〉, 〈1′23〉, 〈12′3〉, 〈123′〉, 〈1′2′3〉, 〈1′23′〉, 〈12′3′〉,
〈1′2′3′〉.

If one ideal boundary has m ideal vertices of a given ideal polyhedron and
the other ideal boundary has its remaining n ideal vertices, then we simply call
it an (m,n) ideal polyhedron. Hence, the usual ideal tetrahedron is a (4, 0)
ideal tetrahedron.

3H

1′

3′

2′

2

1

3 3H

0

Figure 18

The octahedron obtained above is divided into 8 tetrahedral pieces, which
have three ideal vertices and one common vertex 0. We know that vol〈01′23′〉 =
vol〈012′3〉 by symmetry and hence

2volS = 2vol〈0123〉 = vol〈1232′〉+ vol〈1233′〉 − vol〈11′23′〉.
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α

β

γ

1

2

3

A

B

C

0

Figure 19

Let us denote the dihedral angles of the tetrahedron S as α, β, γ, A,B,C (see
Fig. 19). Note that a (3, 1) ideal vertex condition gives another type of ideal
vertex condition. For a usual (4, 0) ideal tetrahedron, we know the ideal vertex
condition α + β + γ = π for the surrounding dihedral angles α, β, γ at each
ideal vertex, and apply this condition to our (3, 1) ideal tetrahedron. Then the
tetrahedron S has three relations different from the usual one α + (π − B) +
(π − C) = π, β + (π −A) + (π − C) = π, γ + (π −A) + (π −B) = π, here we
can easily check the relations (see Fig. 20). Therefore, we get

(23) A =
π − α+ β + γ

2
, B =

π + α− β + γ

2
, C =

π + α+ β − γ

2
.

Bπ −

C

B

α

Cπ −

α

3H

Figure 20

Then the ideal tetrahedron 〈1232′〉 has common dihedral angles at vertex 2
with S. This (3, 1) ideal tetrahedron is obtained as a trihedron minus the (4, 0)
ideal tetrahedron, where this trihedron is obtained by extending edges 〈2′1〉,
〈2′2〉, 〈2′3〉, so the (3, 1) ideal tetrahedron has the property that the sum of
two opposite dihedral angles is π.

Therefore, the dihedral angles of 〈1232′〉 are π−A, π−B, γ,A,B, π− γ (see
Fig. 21), and the volume of the tetrahedron 〈1232′〉 is the volume of a trihedron
with three dihedral angles π−A, π−B, γ minus an ordinary ideal tetrahedron
with three dihedral angles π−A, π−B, γ. The volume of the ideal tetrahedron
is given by (5) and the volume of the trihedron is given by (7),
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Figure 21

so the volume of 〈1232′〉 follows as

(24)

vol〈1232′〉 = vol(Tri(π −A, π −B, γ))− vol(Tetra(π −A, π −B, γ))

=
πi

2
(−π +A+B − γ)− ∧(π −A)− ∧(π −B)− ∧(γ).

Similarly, six dihedral angles of the tetrahedron 〈1233′〉 are obtained and rep-
resented by α, π − B, π − C, π − α,B,C (see Fig. 21). We can also obtain the
volume of 〈1233′〉 as

(25) vol〈1233′〉 = πi

2
(−π +B + C − α)− ∧(π −B)− ∧(π − C)− ∧(α).

The (2, 2)-type ideal tetrahedron 〈121′3′〉 requires another method. The

angles are easily obtained and represented as π−B, π− β, π−α−β−γ
2 using the

property that two opposite dihedral angles are the same (see Fig. 22).

3H

1′

3′

2

1

3H

Bπ −

π β−

2
π α β γ− − −

2
π α β γ− − −

Bπ −

π β−

Figure 22

Let us consider a general (2, 2)-type ideal tetrahedron with dihedral angles
α, β, γ, where β, γ are dihedral angles at the Lorentz part and α is a dihedral
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angles at the hyperbolic part. Then the volume of the (2, 2) ideal tetrahedron
with dihedral angles α, β, γ can be deduced from

vol(Tri(α, β, γ))− vol(Tri(α, π − β, π − γ)) + vol(Tetra(α, π − β, π − γ)).

The exact explanation is shown in Fig. 23.

3H

α

β

α

β
γ

γ

=

γ

α α

β
β

ββ

γ

γ
γ

α

α

α

β

+
_

π β−

π γ−

π γ−

π γ−

α

π β−

γ

Figure 23

We know that

vol(Tri(α, β, γ)) =
πi

2
(π − α− β − γ),

vol(Tri(α, π − β, π − γ)) =
πi

2
(−π − α+ β + γ),

vol(Tetra(α, π − β, π − γ)) = ∧(α) + ∧(π − β) + ∧(π − γ)

= ∧(α) − ∧(β)− ∧(γ),

so we get the volume of the (2, 2) ideal tetrahedron as follows:

πi

2
(π − α− β − γ)− πi

2
(−π − α+ β + γ) + ∧(α) − ∧(β) − ∧(γ)

= πi(π − β − γ) + ∧(α) − ∧(β)− ∧(γ).

Since our (2, 2) ideal tetrahedron 〈121′3′〉 has three dihedral angles π−α−β−γ
2 ,

π −B, and π − β, the volume of 〈121′3′〉 is obtained as

(26) πi(−π +B + β) + ∧(π − α− β − γ

2
) + ∧(B) + ∧(β).
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Therefore, we conclude that the volume of the tetrahedron S is represented
by using the formulas (24), (25), (26), and (23), as follows

2volS = vol〈1232′〉+ vol〈1233′〉 − vol〈121′3′〉

=
πi

2
(π − α− β − γ) + ∧(A) + ∧(B) + ∧(C)− ∧(α) − ∧(β) − ∧(γ)

− ∧(π − α− β − γ

2
).

U
P

S

I

α

β

γ

α
1

β
1

γ
1

Figure 24

If we pull one hyperbolic vertex of a tetrahedron with three ideal vertices out
to the Lorentzian part, the tetrahedron has three more ideal points on its edges.
So the resulting tetrahedron U is different from the tetrahedron S, which has
only 3 ideal points on its edges (see Fig. 24). By considering a trihedron with
dihedral angles α, β, γ, we can make the tetrahedron U that we really want by
eliminating S from Tri(α, β, γ). That tetrahedron U has six dihedral angles
α, β, γ, and π −A, π −B, π − C, i.e.,

α, β, γ, α1 =
π + α− β − γ

2
, β1 =

π − α+ β − γ

2
, γ1 =

π − α− β + γ

2
.

Now we can calculate the volume of U

2vol(U) = 2vol(Tri(α, β, γ))− 2vol(S)

=
πi

2
(π − α− β − γ) + ∧(α) + ∧(β) + ∧(γ)

+ ∧(π + α− β − γ

2
) + ∧(π − α+ β − γ

2
) + ∧(π − α− β + γ

2
)

− ∧(α+ β + γ − π

2
).
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On the other hand, note that

vol(U) = vol(I) + vol(P ) =
1

2
vol(Tri(α, β, γ)) + vol(P )

=
πi

4
(π − α− β − γ) + vol(P ),

hence we get

(27) 2vol(P )=∧(α)+∧(β)+∧(γ)+∧(α1)+∧(β1)+∧(γ1)−∧(α+β+γ−π

2
),

where α1 = π+α−β−γ
2 , β1 = π−α+β−γ

2 , γ1 = π−α−β+γ
2 .

Consequently, formulas (27) and (6) have the same expression, showing the
(special case of) a geometric version of Kellerhals’s and Usijima’s results from
the viewpoint of extended hyperbolic space (see [8] and [13]).

Now we will use Λ instead of ∧. The two functions Λ and ∧ have the same
values for α, β, γ, α1, β1, γ1, but Λ(α+β+γ−π

2 ) 6= ∧(α+β+γ−π
2 ). If we pull the

non-ideal vertex out to outside Hn, then the value α+β+γ−π
2 will change from

+ to −, hence we get the formula (8) for the clockwise contour choice by formula
(4).

Consequently, we obtain

2vol(U) = Λ(α) + Λ(β) + Λ(γ) + Λ(α1) + Λ(β1) + Λ(γ1)− Λ(
α+ β + γ − π

2
),

thereby reproving Theorem 3.2.
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