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ON A RECURRENCE RELATION OF

K-MITTAG-LEFFLER FUNCTION

Virendra Singh Dhakar and Kishan Sharma

Abstract. The principal aim of this paper is to investigate a recurrence
relation and an integral representation of k-Mittag-Leffler function intro-
duced earlier by Dorrego and Cerutti [2] and several special cases have
also been discussed.

1. Introduction and preliminaries

Fractional calculus deals with derivatives and integrals of arbitrary orders.
During the last three decades fractional calculus has been applied to almost
every field of mathematics like special functions, science, engineering and tech-
nology. Many applications of fractional calculus can be found in turbulence and
fluid dynamics, stochastic dynamical system, plasma physics and controlled
thermonuclear fusion, non-linear control theory, image processing, non-linear
biological systems and astrophysics. The Mittag-Leffler function has gained
importance and popularity during the last one decade due mainly to its ap-
plications in the solution of fractional-order differential, integral and difference
equations arising in certain problems of mathematical, physical, biological and
engineering sciences. This function is introduced and studied by the Swedish
mathematician Gosta Mittag-Leffler [9, 10] in terms of the power series

(1.1) E
α
(x) =

∞
∑

n=0

xn

Γ(αn+ 1)
(α > 0).

In 1905, a generalization of this series in the following form

(1.2) E
α,β

(x) =

∞
∑

n=0

xn

Γ(αn+ β)
(α, β > 0)

has been studied by several authors notably by Mittag-Leffler [9, 10], Wiman
[13], Agrawal [1], Humbert and Agrawal [8] and Dzrbashjan [3, 4, 5]. It is shown
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in [6] that the function defined by (1.1) and (1.2) are both entire functions. In
1971, Prabhakar [11] introduced the function which is defined by

(1.3) Eγ
α,β

(z) =

∞
∑

n=0

(γ)nz
n

Γ(αn+ β)n!
(α, β, γ ∈ C,Re(α),Re(β),Re(γ) > 0),

where (γ)n is the Pochhammer’s symbol (see e.g. [3]) defined (λ ∈ C) by

(λ)n =

{

1, n = 0, λ 6= 0;
λ(λ + 1) · · · (λ− n+ 1), n ∈ N, λ ∈ C,

(1.4)

=
Γλ+ n

Γλ
, n ∈ N ∪ {0}, λ ∈ C/Z,(1.5)

N and Z being the set of positive integers and integers, respectively.
In 2012, G. A. Dorrego and R. A. Cerutti [2] introduced k-Mittag-Leffler

function Eγ
k,α,β(z) defined by

(1.6) Eγ
k,α,β(z) =

∑∞

n=0

(γ)n,kz
n

Γk(αn+ β)n!
,

where (γ)n,k is the k-Pochhammer’s symbol. k-Pochhammer’s symbol and k-
Gamma function are given below

(1.7) (x)n,k = x(x+ k)(x + 2k) · · · (x+ (n− 1)k), γ ∈ C, k ∈ R, and n ∈ N

and Γk(z) =
∫

∞

0
e−

tk

k tz−1 dt, k ∈ R, z ∈ C need more accurate convergence
conditions. Particularly, Γk(x) → Γ(x) as k → 1.

2. Recurrence relation

In this section we derive a recurrence relation of k-Mittag-Leffler function.
The result is represented in the form of a theorem stated below:

Theorem 2.1. For R(α+ p) > 0, R(β + s) > 0, R(γ) > 0,

Eγ
k,α+p,β+s+1(z)− Eγ

k,α+p,β+s+2(z)

= (β + s)(β + s+ 2)Eγ
k,α+p,β+s+3(z) + (α+ p)2z2Ëγ

k,α+p,β+s+3(z)(2.1)

+ (α+ p){α+ p+ 2(β + s+ 1)}zĖγ
k,α+p,β+s+3(z),

where Ėγ
k,α,β(z) =

d
dz
Eγ

k,α,β
(z) and Ëγ

k,α,β
(z) = d2

dz2E
γ
k,α,β

(z).

It is easy to obtain the following corollary by letting α+p = v and β+s = m.

Corollary 2.1. We have, for v,m ∈ N

Eγ
k,v,m+1(z) = Eγ

k,v,m+2(z) +m(m+ 2)Eγ
k,v,m+3

(z) + v2z2Ëγ
k,v,m+3(z)

+ vv + 2(m+ 1)zE.γ
k,α+p,β+s+3

(z).(2.2)
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Proof of Theorem 2.1. By applying the fundamental relation of the Gamma
function Γ(z + 1) = zΓ(z) to (1.4), we can write

Eγ
k,α+p,β+s+1(z) =

∞
∑

n=0

(γ)n,kz
n

{(α+ p)n+ β + s+ 1}Γk((α+ p)n+ β + s)n!

and

Eγ
k,α+p,β+s+2

(z)

=
∞
∑

n=0

(γ)n,kz
n

((α+ p)n+ β + s+ 1)((α+ p)n+ β + s)Γk((α+ p)n+ β + s)n!
,

which we can write as follows:

Eγ
k,α+p,β+s+2(z)

(2.3)

=
∞
∑

n=0

{

1

(α+ p)n+ β + s
−

1

(α + p)n+ β + s+ 1

}

(γ)n,kz
n

((α + p)n+ β + s+ 1)Γk((α+ p)n+ β + s)n!

= Eγ
k,α+p,β+s+1(z)−

∞
∑

n=0

(γ)n,kz
n

{(α+ p)n+ β + s+ 1}Γk((α+ p)n+ β + s)n!
.

For convenience, we denote the last summation in (2.3) by S:

S =

∞
∑

n=0

(γ)n,kz
n

((α+ p)n+ β + s+ 1)Γk((α + p)n+ β + s)n!
(2.4)

= Eγ
k,α+p,β+s+1

(z)− Eγ
k,α+p,β+s+2

(z).

Applying a simple identity

1

u
=

1

u(u+ 1)
+

1

u+ 1
, where u = (α+ p)n+ β + s+ 1, we obtain

S =

∞
∑

n=0

{(α+ p)n+ β + s}(γ)n,kz
n

Γk((α + p)n+ β + s+ 3)n!
+

∞
∑

n=0

{(α+ p)n+ β + s}{(α+ p)n+ β + s+ 1}(γ)n,kz
n

Γk((α + p)n+ β + s+ 3)n!

(2.5)

= (α + p)

∞
∑

n=1

(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)(n− 1)!
+ (β + s)

∞
∑

n=0

(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)n!

+ (α+ p)2
∞
∑

n=1

n(γ)n,kz
n

Γk((α + p)n+ β + s+ 3)(n− 1)!
+ b

∞
∑

n=1

(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)(n− 1)!

+ c

∞
∑

n=0

(γ)n,kz
n

Γk((α + p)n+ β + s+ 3)n!
,

where b = (α+ p) + 2β + 2s+ 1 and c = (β + s) + β + s+ 1.
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We now express each summation in the right hand side of (2.5) as follows

(2.6)
d2

dz2
{z2Eγ

k,α+p,β+s+3
(z)} =

∞
∑

n=0

(n+ 2)(n+ 1)(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)n!

we find from (2.6) that
∞
∑

n=1

n(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)(n− 1)!
= z2Ëγ

k,α+p,β+s+3(z) + 4zĖγ
k,α+p,β+s+3(z)

− 3

∞
∑

n=1

(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)(n− 1)!
(2.7)

considering

d

dz
{zEγ

k,α+p,β+s+3(z)} =

∞
∑

n=0

(n+ 1)(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)n!
.

Similarly, we have

(2.8)

∞
∑

n=1

(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)(n− 1)!
= zĖγ

k,α+p,β+s+3
(z).

Applying (2.7) and (2.8) yields
(2.9)
∞
∑

n=1

(γ)n,kz
n

Γk((α+ p)n+ β + s+ 3)(n− 1)!
= zĖγ

k,α+p,β+s+3(z)+z2Ëγ
k,α+p,β+s+3(z).

Applying (2.8) and (2.9) to (2.5), we get

s = (α+ p)2z2Ëγ
k,α+p,β+s+3(z) + {(α+ p)2 + (α+ p) + b}zĖγ

k,α+p,β+s+3
(z)

+ (β + s+ c)Eγ
k,α+p,β+s+3(z).

Now setting the last identity into (2.4) computes the proof of Theorem 2.1. �

3. Integral representations

Theorem 3.1. The following result holds good,

∫ 1

0

tβ+sEγ
k,α+p,β+s(t

α+p) dt

(3.1)

= Eγ
k,α+p,β+s+1(1)−Eγ

k,α+p,β+s+2(1) (R(α+ p) > 0, R(β + s) > 0), R(γ) > 0).

By setting α + p = v and β + s = m ∈ N in (3.1), we get the following
corollary.

Corollary 3.1.

(3.2)

∫ 1

0

tβ+sEγ
k,v,m(tv) dt = Eγ

k,v,m+1(1)− Eγ
k,v,m+2(1), v,m ∈ N.
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Proof of Theorem 3.1. Putting z = 1 in (2.4) gives
(3.3)
∞
∑

n=0

(γ)n,kz
n

{(α+ p)n+ β + s+ 1}Γk((α+ p)n+ β + s)n!
= Eγ

k,α+p,β+s+1(1)−Eγ
k,α+p,β+s+2(1).

It is easy to find that

(3.4)

∫ 1

0

tβ+sEγ
k,α+p,β+s(t

α+p)dt =

∞
∑

n=0

(γ)n,kz
(α+p)n+β+s+1

{(α+ p)n+ β + s+ 1}Γk((α+ p)n+ β + s)n!
.

Comparing (3.3) with the identity obtaining by setting z = 1 in (3.4) is seen
to yield (3.1) in Theorem 3.1. �

4. Special cases

(1) Setting k = 1 in (2.1) reduces to known recurrence relation of Eγ
α,β(z)

(see [12]).
(2) Setting p = 0, γ = k = 1 and β + s = m ∈ N in (2.1) reduces to a

known recurrence relation of Eα+β(z) (see [7]).
(3) Setting v = m = k = γ = 1 and v = m = k = γ = 2 in (3.2),

respectively, yields
∫ 1

0

t et dt = E1
1,2(1)− E1

1,3(1) and

∫ 1

0

tE2
1,1(t) dt = E2

1,2(1)− E2
1,3(1).
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ses généralisations, Bull. Sci. Math. (2) 77 (1953), 180–185.
[9] G. M. Mittag-Leffler, Sur la nuovelle function Ea(x), C. R. Acad. Sci. Paris (2) 137

(1903), 554–558.
[10] , Sur la représentation analytique d’une branche uniforme d’une fonction

monogène, Acta Math. 29 (1905), no. 1, 101–181.
[11] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler functions

in the Kernel, Yokohama Math. J. 19 (1971), 7–15.
[12] A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and

its properties, J. Math. Anal. Appl. 336 (2007), no. 2, 797–811.



856 VIRENDRA SINGH DHAKAR AND KISHAN SHARMA
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