
Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 833–850
http://dx.doi.org/10.4134/CKMS.2013.28.4.833

COMPUTING THE HAUSDORFF DISTANCE BETWEEN

TWO SETS OF PARAMETRIC CURVES

Ik-Sung Kim and William McLean

Abstract. We present an algorithm for computing the Hausdorff dis-
tance between two parametric curves in R

n, or more generally between
two sets of parametric curves in R

n. During repeated subdivision of the
parameter space, we prune subintervals that cannot contain an optimal
point. Typically, our algorithm costs O(logM) operations, compared with
O(M) operations for a direct, brute-force method, to achieve an accuracy
of O(M−1).

1. Introduction

Let (X, d) be a metric space, so that d(x, y) is the distance between two
points x and y ∈ X . We denote the distance from a point x ∈ X to a nonempty
subset B ⊆ X by

(1) d(x,B) = inf
y∈B

d(x, y).

Given a second, nonempty subset A ⊆ X , the directed Hausdorff distance from

A to B is defined by
h(A,B) = sup

x∈A

d(x,B),

and the Hausdorff distance between A and B by

H(A,B) = max
(

h(A,B), h(B,A)
)

.

If x∗ ∈ A is such that h(A,B) = d(x∗, B), then we call x∗ an optimal point.
We remark that the Hausdorff distance defines a metric on the set of closed,
bounded subsets of X .

In pattern recognition and computer vision, it is very important to compare
shapes and patterns, and to give a numerical value indicating their similar-
ity. The Hausdorff distance is a well known similarity measure: the smaller
the Hausdorff distance between two shapes the greater is their degree of re-
semblance. In practice, one often wants to find ming∈G h

(

A, g(B)
)

for some
transformation group G, such as the set of rigid body motions.

Received September 26, 2011.
2010 Mathematics Subject Classification. Primary 65D18, 68U05.
Key words and phrases. Hausdorff distance, pruning technique.

c©2013 The Korean Mathematical Society

833

834 IK-SUNG KIM AND WILLIAM MCLEAN

Several authors have considered methods for computing h(A,B). Alt et al.
[1] discussed polynomial-time algorithms when A and B are finite collections
of simplices (e.g., line segments, triangles, or tetrahedrons). Belogay et al.
[2] considered discretized curves, lying on an M × N grid of pixels, and de-
vised an algorithm with an average cost of (|A| + |B|) logmax(M,N), where
|A| denotes the number of pixels in A. Bouts [3] considered the problem of
computing the minimum Hausdorff distance, ming∈G h

(

A, g(B)
)

, where A and
B are finite planar sets and G is the group of translations. Rote [5] discussed
a one-dimensional version of the same problem, and Scharf [6] developed an
algorithm for computing the Hausdorff distance between planar sets of curves
having rational parametric representations.

In this paper, we focus our attention on the problem of computing the Haus-
dorff distance H(A,B) between two sets of parametric curves, A and B, in
n-dimensional Euclidean space. Thus,

X = R
n and d(x, y) = |x− y| =

√

√

√

√

n
∑

i=1

(xi − yi)2

for x = (x1, . . . , xn) and y = (y1, . . . , yn).
To begin with, we suppose that each of A and B is a single, continuous

parametric curve. In Section 2, we consider a direct method for approximating
the directed Hausdorff distance h(A,B) using M points in A and N points in
B, leading to a computational cost of O(MN) operations.

Section 3 addresses the problem of computing the distance d(x,B) from
a point x to a curve B. Subsequently, we treat this problem as solved, and
assume that d(x,B) is known exactly.

We proceed in Section 4 to explain an adaptive algorithm for estimating
h(A,B), that selectively samples points on A, far fewer than M in total, to
reduce the computational cost. The key idea is to reduce the necessary work
by “pruning” subintervals of the parameter interval [a, b]. In typical cases, our
algorithm requires a runtime of only O(logM), far less than the O(M) needed
by the direct method, to achieve a comparable accuracy. In this context, each
computation of d(x,B) counts as a single operation.

In Section 5 we extend our algorithm to handle the case when A and B
consist of multiple parametric curves.

Finally, Section 6 presents several numerical examples illustrating the per-
formance of our algorithm for different configurations of A and B.

2. Direct method

Suppose that A and B are individual curves, parameterized by some contin-
uous functions

f : [a, b]→ R
n and g : [c, d]→ R

n,

COMPUTING THE HAUSDORFF DISTANCE 835

respectively, so that

(2) A = { f(t) : a ≤ t ≤ b} and B = { g(u) : c ≤ u ≤ d}.
By selecting parameter values

(3) a ≤ t1 < t2 < · · · < tM ≤ b and c ≤ u1 < u2 < · · · < uN ≤ d,

and setting xi = f(ti) and yj = g(uj), we obtain two sets of sample points

S = {x1, x2, . . . , xM} ⊆ A and T = {y1, y2, . . . , yN} ⊆ B.

We can then compute an obvious, brute-force, discrete approximation to the
directed Hausdorff distance,

(4) h(A,B) ≈ h(S, T) = max
1≤i≤M

min
1≤j≤N

|xi − yj |,

at a cost of O(MN) operations. To estimate the error in the approximation
(4), we adopt the convention that t0 = a, tM+1 = b, u0 = c and uN+1 = d, and
define the mesh widths

(5) δS = max
1≤i≤M+1

(ti − ti−1) and δT = max
1≤j≤N+1

(uj − uj−1).

The proof of the error bound makes use of two technical lemmas. We denote
the modulus of continuity of f by

ωf (σ) = sup{ |f(t)− f(t′)| : t, t′ ∈ [a, b] with |t− t′| ≤ σ },
and note that ωf(σ)ց 0 as σ ց 0 because f is continuous.

Lemma 2.1. h(A,S) ≤ ωf (
1

2
δS) and h(B, T) ≤ ωg(

1

2
δT).

Proof. Given x = f(t) ∈ A, we can find ti ∈ S such that |t− ti| ≤ 1

2
δS , so

d(x, S) ≤ |x− xi| = |f(t)− f(ti)| ≤ ωf (
1

2
δS),

and taking the supremum over x ∈ A gives the estimate for h(A,S). The
estimate for h(B, T) follows in the same way. �

Lemma 2.2. d(x,B) ≤ d(x, T) ≤ d(x,B) + h(B, T) for x ∈ R
n.

Proof. The inclusion T ⊆ B immediately implies the left-hand inequality:

d(x,B) = inf
y∈B
|x− y| ≤ inf

y∈T
|x− y| = d(x, T).

To prove the right-hand inequality, let ǫ > 0. First choose y∗ ∈ B such that

|x− y∗| < d(x,B) + ǫ,

and then choose yj ∈ T such that |yj − y∗|= min1≤k≤N |yk− y∗|= d(y∗, T). In
this way,

d(x, T) ≤ |x− yj | ≤ |x− y∗|+ |y∗ − yj|
< d(x,B) + ǫ+ d(y∗, T) ≤ d(x,B) + ǫ+ h(B, T). �

836 IK-SUNG KIM AND WILLIAM MCLEAN

Theorem 2.3. For the approximation (4) we have the error bound
∣

∣h(S, T)− h(A,B)
∣

∣ ≤ max
(

h(A,S), h(B, T)
)

≤ max
(

ωf(
1

2
δS), ωg(

1

2
δT)

)

.

Proof. In view of Lemma 2.1, it suffices to show that

h(S, T) ≤ h(A,B) + h(B, T) and h(A,B) ≤ h(S, T) + h(A,S).

Lemma 2.2 implies

d(xi, T) ≤ d(xi, B) + h(B, T) ≤ h(S,B) + h(B, T),

and the first inequality follows by taking the maximum over xi ∈ S. For the
second inequality, let ǫ > 0 and note that h(A,B) ≤ h(A, T) by Lemma 2.2.
Choose x∗ ∈ A such that h(A, T) < d(x∗, T) + ǫ, and then choose xi ∈ S such
that |x∗ − xi| = d(x∗, S). In this way,

|x∗ − yj | ≤ |x∗ − xi|+ |xi − yj | = d(x∗, S) + |xi − yj|
and so

d(x∗, T) = min
1≤j≤N

|x∗ − yj | ≤ d(x∗, S) + min
1≤j≤N

|xi − yj |

= d(x∗, S) + d(xi, T) ≤ h(A,S) + h(S, T),

implying that h(A,B) ≤ h(A, T) < h(A,S) + h(S, T) + ǫ. �

3. Distance from a point to a curve

We seek a method for approximating h(A,B) that requires fewer operations
than the direct method (4). To do so, we first require an efficient method to
compute (1), the distance from a point x to the curve B.

Since d(x,B) = minc≤u≤d φ(u), where φ(u) = |x − g(u)|, we can use any
standard method for computing the minimum value of a continuous function
over a closed, bounded interval. A typical minimization algorithm [4] combines
golden-section search with quadratic interpolation to give a reliable method
that achieves superlinear convergence if the objective function is C2 in a neigh-
bourhood of the limit of the iterates. Unfortunately, this limit might be only
a local minimum. Convergence to a global minimum u∗ on an interval [c, d]
is guaranteed if the objective function φ is unimodal : strictly decreasing for
c ≤ u ≤ u∗ and strictly increasing for u∗ ≤ u ≤ d.

In our case, we must expect that, in general, φ is not unimodal on [c, d].
Given a subdivision of the interval [c, d] as in (3), Procedure 3.1 returns a list
I of non-overlapping subintervals such that

min
u∈

⋃
I
φ(u) ≤ min

0≤j≤N
φj , where φj = φ(uj);

see Figure 1. Applying a standard minimization algorithm over each subinterval
in I, and taking the least of these computed local minima, we have a candidate
for the global minimum.

COMPUTING THE HAUSDORFF DISTANCE 837

Procedure 3.1 SeekUnimodal(u, φ)

I ← ∅
if φ0 < φ1 then

I ← I ∪ [u0, u1]
end if

for j = 1, N − 1 do

if φj < φj−1 and φj < φj+1 then

I ← I ∪ [uj−1, uj+1]
end if

end for

if φN < φN−1 then

I ← I ∪ [uN−1, uN]
end if

return I

0.0 0.2 0.4 0.6 0.8 1.0
u

�0.3

�0.2

�0.1

0.0

0.1

0.2

0.3

�

(u
)

Figure 1. The intervals I found by SeekUnimodal.

Heuristically, we expect that if the chosen subdivision of [c, d] is sufficiently
fine, in other words if δT in (5) is sufficiently small, then

(1) φ is unimodal on each subinterval in I,
(2) a global minimum of φ occurs in at least one subinterval in I.

However, for any choice of sample parameter values tj we can easily construct
an x and B for which neither 1 nor 2 hold.

Indeed, no finite set of samples can reveal with certainty if φ is unimodal on
a specified interval unless we know some additional information. For instance,
if φ is strictly convex, then it must be unimodal.

In some cases, the following result provides bounds on the global minimum
of φ regardless of whether this function is unimodal.

838 IK-SUNG KIM AND WILLIAM MCLEAN

Theorem 3.1. If φ : [c, d] → R is a C1 function and if there is a constant

Λ > 0 such that

(6) φ′(v)− φ′(u) ≤ Λ(v − u) for c ≤ u < v ≤ d,

then for δ = δT given by (5) we have

min
c≤u≤d

φ(u) ≤ min
0≤j≤N+1

φ(uj) ≤ min
c≤u≤d

φ(u) + 1

4
Λδ2.

Proof. The bound is an easy consequence of Lemma 2.4.1 and Theorem 6.2.1
of Brent [4]. �

The condition (6) holds if, for instance, φ is C2 with φ′′(u) ≤ Λ for c ≤ u ≤ d.
Unfortunately, we do not know of a reliable automatic way to choose a

suitable value for N in Procedure 3.1. In practice, we can make a visual
assessment of the length scale of oscillations in the graph of φ.

Even if we known an interval that contains a point u∗ at which φ attains a
global minimum and on which φ is unimodal, we cannot expect to compute u∗

exactly using a system of floating-point arithmetic with fixed relative precision
ǫ > 0. If we are willing to perform a sufficient number of steps of the minimiza-
tion algorithm, then we should be able to compute φ(u∗) with essentially the
full relative accuracy ǫ. However, for u∗ itself we have to be content with much
lower accuracy, since an uncertainty of order ǫ in the value of φ(u∗) corresponds
to a much larger uncertainty of order

√
ǫ when φ is C2 and φ′(u∗) = 0.

We could attempt to compute the directed Hausdorff distance h(A,B) by
applying the minimization algorithm, in combination with Procedure 3.1, to
the objective function ϕ(t) = −d

(

f(t), B
)

, so that h(A,B) = −mina≤t≤b ϕ(t).
However, the problem of choosing N is even worse than in the basic calculation
of d(x,B), since the behaviour of ϕ is difficult to infer from looking at the curves
A and B. Instead, in the next section, we prefer an alternative approach.

4. Algorithm based on a pruning technique

Suppose that A and B are continuous parametric curves, and that we have
an algorithm for computing d(x,B) exactly for x ∈ A.

We may approximate the directed Hausdorff distance from A to B as follows,

(7) h(A,B) ≈ h(S,B) = max
1≤i≤M

d(xi, B).

The cost of computing h(S,B) will be roughly M times the cost of computing
d(x,B) for a point x. By taking T = B in Theorem 2.3, we see that

|h(S,B)− h(A,B)| ≤ ωf (
1

2
δS),

so we can improve the accuracy of the approximation (7) by adding more
sample points to reduce the value of δS . However, such a direct computation
costs O(M) operations, and achieving high accuracy will be expensive because
δS ≥ (b− a)/M . We therefore propose a new, cheaper algorithm.

COMPUTING THE HAUSDORFF DISTANCE 839

When adding sample points, the following simple observation provides a
criterion for ignoring parts of A, a process referred to as “pruning”, based on
a current estimate m for h(A,B).

Lemma 4.1. Suppose that x∗ ∈ A and m ≥ d(x∗, B). If we define

w = m− d(x∗, B),

then for x ∈ A,

d(x,B) ≤ m whenever |x− x∗| ≤ w.

Proof. If |x− x∗| ≤ w, then for all y ∈ B,

|x− y| ≤ |x− x∗|+ |x∗ − y| ≤ w + d(x∗, B) = m. �

From the lemma above, we can prune all points x such that |x− x∗| ≤ w.
Consider a subinterval [α, β] of the parameter interval [a, b], and suppose

that MaxDist ≤ h(A,B). In Procedure 4.1, we put

µ = 1

2
α+ 1

2
β, Midpt = f(µ), Dist = d(Midpt, B),

and assume that Dist ≤ MaxDist. Applying Lemma 4.1 with x∗ = Midpt,
m = MaxDist and w = MaxDist −Dist, we see that

(8) d(x,B) ≤ MaxDist whenever |x−Midpt| ≤ w.

Since f is continuous, the set

Rw,α,β = {α, β} ∪ { t ∈ [α, β] : |f(t)−Midpt| = w }
is closed in [α, β], and we may define

(9)
tα = max{ t ∈ Rw,α,β : t ≤ µ },
tβ = min{ t ∈ Rw,α,β : t ≥ µ }.

If w = 0, then tα = tβ = µ. Otherwise,

|f(t)−Midpt| < w for tα < t < tβ ,

and therefore by (8),

d
(

f(t), B
)

≤ MaxDist for tα ≤ t ≤ tβ ,

which means that, when adding new sample points, we may ignore f(t) for
t ∈ [tα, tβ], since such a point is never further from B than the best of the
sample points we have already used.

This analysis leads to Procedure 4.1, a pruning algorithm that returns a
set I of 0, 1 or 2 subintervals of [α, β], whose union

⋃ I contains all values of
t ∈ [α, β] that might satisfy d

(

f(t), B
)

> MaxDist. In other words, if f(t) is a
potentially advantageous new sample point with t ∈ [α, β], then t must belong
to one of the intervals in I.

Procedure 4.2 starts from the whole interval [a, b] and repeatedly applies the
pruning procedure until ariving at a collection of subintervals I, each of which
has length smaller than a specified tolerance ǫ.

840 IK-SUNG KIM AND WILLIAM MCLEAN

Procedure 4.1 Prune([α, β],Midpt,Dist,MaxDist)

Require: [α, β] ⊆ [a, b] and Midpt = f(1
2
α+ 1

2
β)

Require: Dist = d(Midpt, B) ≤ MaxDist

Ensure: If t ∈ [α, β] and d
(

f(t), B
)

> MaxDist then t ∈ ⋃ I
w ← MaxDist−Dist

tα ← max{ t ∈ Rw,α,β : t ≤ 1

2
α+ 1

2
β }

tβ ← min{ t ∈ Rw,α,β : t ≥ 1

2
α+ 1

2
β }

I ← ∅
if tα > α then

I ← I ∪ {[α, tα]}
end if

if tβ < β then

I ← I ∪ {[tβ, β]}
end if

return I

As we will see in the numerical examples of Section 6, Procedure 4.2 exhibits
two kinds of convergence behaviour, depending on the nature of the optimal
point x∗ = f(t∗) ∈ A where d(x∗, B) = h(A,B). The number of retained

subintervals grows like
√
M if t∗ is a stationary point of the function t 7→

d
(

f(t), B
)

, but remains bounded otherwise. In the former case, the CPU time

also grows like
√
M , but fortunately because MaxDist is then less sensitive to

the location of x∗ we do not need to reduce MaxSize to such a small value; see
Example 4 in Section 6.

Theorem 4.2. The value of MaxDist returned by Procedure 4.2 satisfies the

error bound

0 ≤ h(A,B)−MaxDist ≤ ωf(
1

2
ǫ).

Proof. If I = Prune([α, β],Midpt,Dist,MaxDist), then the length of each subin-
terval in I is at most (β − α)/2. Thus, after l iterations of the repeat loop in
Procedure 4.2 we haveMaxSize ≤ 2−l(b−a), showing that the termination con-
dition MaxDist < ǫ must eventually be satisfied. Let I = {[αj , βj]}Nj=1 denote

the final family of subintervals, and let S = {µj}Nj=1 denote the corresponding

set of midpoints, so that δS = max1≤j≤N (βj−αj) satisfies δS < ǫ. The pruning
technique ensures that the set A1 =

⋃ I satisfies h(A1, B) = h(A,B), and by
taking T = B in Theorem 2.3 we see that

0 ≤ h(A,B)−MaxDist = |h(A,B)− h(S,B)| ≤ ωf (
1

2
δS) ≤ ωf (

1

2
ǫ),

where we used the fact that the modulus of continuity ωf (σ) is a monotone
increasing function of σ. �

It remains to discuss the calculation of tα and tβ . Setting

φ(t) = |f(t)−Midpt|2 − w2

COMPUTING THE HAUSDORFF DISTANCE 841

Procedure 4.2 DirHdfDist(A,B, ǫ)

Require: A and B are curves given by (2)
Require: ǫ > 0
Ensure: MaxDist ≤ h(A,B) ≤ MaxDist+ ωf (ǫ/2)
[α1, β1]← [a, b]; N ← 1; MaxSize← b− a; Midpt1 ← f(1

2
α1 +

1

2
β1)

Dist1 ← d(Midpt1, B); MaxDist← Dist1
repeat

I ← ∅
for j = 1, N do

I ← I ∪ Prune([αj , βj],Midptj ,Distj ,MaxDist)
end for

Redefine αj , βj , N so that I = { [αj, βj] : 1 ≤ j ≤ N }
for j = 1, N do

Midptj ← f(1
2
αj +

1

2
βj)

Distj ← d(Midptj , B)
MaxDist← max(Distj ,MaxDist)

end for

MaxSize← max{ βj − αj : j = 1, 2, . . . , N }
until MaxSize < ǫ
return MaxDist

the problem is to find the solutions of φ(t) = 0 nearest to µ and within the
interval [α, β], if they exist. It suffices to consider the case w > 0, for which
φ(µ) < 0.

Given γ ∈ [µ, β] such that φ(γ) ≥ 0, we may compute tβ, with any desired ac-
curacy up to essentially the full relative precision ǫ, using a standard rootfinding
procedure. For instance, the Brent–Dekker algorithm [4] uses a combination of
the bisection, secant and inverse quadratic interpolation methods, and achieves
superlinear convergence provided φ has a nonzero derivative at the root. The
chief risk is that the interval (µ, γ] contains more than one root, because in this
case the rootfinding iteration may converge to the wrong one. Procedure 4.3
uses a very simple, linear search to obtain γ = FirstCross(φ, µ, β, n); the larger
the value of n, the less the chance of skipping over a sign change. If no γ is
found, then tβ = β.

Similarly, to compute tα we solve φ(t) = 0 for t in the interval [γ, µ], with
γ = FirstCross(φ, µ, α, n), unless no such γ is found, in which case we put
tα = α.

5. Sets of parametric curves

We now consider the general case when A and B consist of multiple para-
metric curves, that is,

(10) A = A1 ∪ A2 ∪ · · · ∪ AP and B = B1 ∪B2 ∪ · · · ∪BQ,

842 IK-SUNG KIM AND WILLIAM MCLEAN

Procedure 4.3 FirstCross(φ, Start,Finish, n)

Require: φ(Start) < 0
∆t = (Finish − Start)/n
SignChange = false

for k = 1, n do

γ = a+ k∆t
if φ(γ) ≥ 0 then

SignChange = true

break

end if

end for

if SignChange then

return γ
else

return none

end if

where

(11) Ap = { fp(t) : ap ≤ t ≤ bp } and Bq = { gq(u) : cq ≤ u ≤ dq }.
To compute the distance from a point x to the set B, we compute the distance
to each of the Bq and use the fact that

d(x,B) = min
1≤q≤Q

d(x,Bq).

Similarly, since
h(A,B) = max

1≤p≤P
h(Ap, B),

we could compute h(A,B) using P calls to Procedure 4.2, but this means
we effectively prune subintervals from each Ap separately. A more efficient
approach is to prune subintervals from all the Ap based on a common value of
MaxDist, as described in Procedure 5.1.

6. Examples

We present seven examples to illustrate the performance of Procedures 4.2
and 5.1 for computing the directed Hausdorff distance h(A,B). In each case,
we set the tolerance ǫ = (b − a)/M so that the accuracy is comparable that
achieved by a semi-direct method,

h(A,B) ≈ h(S,B) = max
1≤i≤M

d(x,B);

cf. (4). We aim to reduce the computational cost from O(M) to something
like O(logM). Figure 2 shows the sets A and B for Examples 1–6, all of which
are in 2D. Figure 5 shows Example 7, which is in 3D. The computations were
performed using Matlab.

COMPUTING THE HAUSDORFF DISTANCE 843

Procedure 5.1 DirHdfDist(A,B, ǫ)

Require: A and B are sets of parametric curves given by (10), (11).
Require: ǫ > 0
for p = 1, P do

[αp
1, β

p
1]← [ap, bp]; Np ← 1; MaxSizep ← bp − ap;

Midpt
p
1 ← fp(1

2
αp
1 +

1

2
βp
1) Dist

p
1 ← d(Midpt

p
1, B);

end for

MaxSize← max1≤p≤P MaxSizep; MaxDist← max1≤p≤P MaxDistp;
repeat

for p = 1, P do

Ip ← ∅
for j = 1, Np do

Ip ← Ip ∪ Prune([αp
j , β

p
j],Midpt

p
j ,Dist

p
j ,MaxDist)

end for

Redefine αp
j , β

p
j , N

p so that Ip = { [αp
j , β

p
j] : 1 ≤ j ≤ Np }

for j = 1, Np do

Midpt
p
j ← fp(1

2
αp
j +

1

2
βp
j)

Dist
p
j ← d(Midpt

p
j , B)

MaxDist← max(Dist
p
j ,MaxDist)

end for

MaxSizep ← max{ βp
j − αp

j : j = 1, 2, . . . , Np }
end for

MaxSize← max1≤p≤P MaxSizep

until MaxSize < ǫ
return MaxDist

Figure 3 shows the running times for Examples 1–7 as a function of M . In
each case, the running time is the average for 20 trials. The upper graph has a
log scale on the horizontal axis, and for comparison we plot 0.05× logM . The
lower graph has a log scale on both axes, and for comparison we plot

√
M .

Example 1. Let

(12)
f(t) = (t, t+ 1) for t ∈ [a, b] = [0, 1],

g(u) = (u, u+ 2) for u ∈ [c, d] = [− 1

2
, 1

2
],

so that A and B, given by (2), are parallel line segments in R
2. In this case,

d(x,B) = 1/
√
2 for every point x ∈ A, so the directed Hausdorff distance is

h(A,B) = 1/
√
2. This example actually illustrates the worst-case behaviour of

our algorithm: because every point of A is a non-isolated, optimal point, the
pruning technique is not able to cull any part of A, and the running time is
O(M); see Table 1. However, this longer running time is of no consequence
because we obtain the value of h(A,B) to machine precision even for a small
value of M .

844 IK-SUNG KIM AND WILLIAM MCLEAN

�1 0 1 2

1.0

1.5

2.0

2.5

3.0

Example 1

�1 0 1 2

1.0

1.5

2.0

2.5

3.0

Example 2

�3 �2 �1 0 1 2
�2

�1

0

1

2

Example 3

�2 �1 0 1
�1

0

1

2
Example 4

�3 �2 �1 0 1

�1

0

1

Example 5

0 2 4 6 8 10

0

2

4

6

Example 6

Figure 2. The sets A (solid line) and B (dotted line).

Table 1. Results for Example 1, where [c, d] = [− 1

2
, 1

2
].

M #I MaxSize MaxDist seconds
10 16 6.25000e-002 0.707106781186548 0.2263

100 128 7.81250e-003 0.707106781186548 1.0379
1000 1024 9.76563e-004 0.707106781186548 7.8072

10000 16384 6.10352e-005 0.707106781186548 131.2414
100000 131072 7.62939e-006 0.707106781186548 1326.7364

Example 2. Define f and g as in (12), but change the parameter interval for
g to [c, d] = [0, 1]. Now, h(A,B) = 1 and the unique, isolated optimal point
is (0, 1) ∈ A. Table 2 shows the effectiveness of the pruning technique: at the
final step of Procedure 4.2 the list I always contains only 2 subintervals, and
we observe a dramatic reduction in the running time.

Example 3. With the choice

f(t) = (t, t2 + t− 1) for t ∈ [a, b] = [−1.5, 1],
g(u) = (u, 2− u2) for u ∈ [c, d] = [−1.5, 1],

COMPUTING THE HAUSDORFF DISTANCE 845

101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014

M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

se
co

nd
s

Example 2
Example 3
Example4 h(A,B)

Example 5 h(A,B)

Example 6
Example 7
0.05�logM

101 102 103 104 105 106 107 108

M

10-2

10-1

100

101

102

103

104

se
co

nd
s

Example 1
Example 4 h(B,A)

Example 5 h(B,A)
�

M

Figure 3. Runtimes for Examples 1–7.

the curves A and B are parabolas, and each optimal point is isolated so the
runtime is O(logM).

Example 4. We define a polynomial of degree 11,

L(t) = t

5
∏

k=−5
k 6=0

t+ k

k
,

and put
f(t) =

(

t, 2
5
L(t)

)

for t ∈ [a, b] = [−2, 1],
g(u) =

(

u, e−u2)

for u ∈ [c, d] = [−2, 1].

846 IK-SUNG KIM AND WILLIAM MCLEAN

Table 2. Results for Example 2, where [c, d] = [0, 1].

M #I MaxSize MaxDist seconds
10 2 6.250e-002 0.969253901204427 0.0932
102 2 7.813e-003 0.996101409284279 0.1209
103 2 9.766e-004 0.999511838017519 0.1570
104 2 6.104e-005 0.999969482887551 0.2041
106 2 9.537e-007 0.999999523162956 0.2788
108 2 7.451e-009 0.999999996274710 0.3647
1010 2 5.821e-011 0.999999999970897 0.4620
1012 2 9.095e-013 0.999999999999546 0.4900
1014 2 7.105e-015 0.999999999999997 0.6252

Table 3. Results for Example 3.

M #I MaxSize MaxDist seconds
10 2 2.223e-001 1.80407474453161 0.0427
102 4 1.479e-002 1.84497126959031 0.0848
103 4 1.068e-003 1.84729390012603 0.1416
104 4 1.857e-004 1.84744139978487 0.1775
105 4 1.347e-005 1.84747017516372 0.2470
106 4 2.344e-006 1.84747203457295 0.2768
108 4 1.234e-008 1.84747242413561 0.4061
1010 4 1.558e-010 1.84747242617187 0.5121
1012 4 1.967e-012 1.84747242619758 0.6143
1014 4 2.492e-014 1.84747242619790 0.6937

This time, in Table 4, we show results for computing both h(A,B) and h(B,A).
The calculation of h(A,B) is fast, because at each step I contains only 2 subin-
tervals. However, the calculation of h(B,A) is much slower since the number

of subintervals grows like
√
M . Figure 4 shows that t∗ is not a stationary point

of d
(

f(t), B
)

, whereas u∗ is a stationary point of d
(

g(u), A
)

. Notice however

that we obtain 7 digits of accuracy with M = 107 in the case of h(A,B), but
only M = 103 in the case of h(B,A). The corresponding CPU times are 0.2435
seconds and 0.7140 seconds, so the calculation of h(B,A) is not as problematic
as it may at first seem. For practical computations, we recommend modifying
the stopping criterion in Procedure 4.2 so that we exit the repeat-loop if ♯I
grows beyond a few hundred.

Example 5. We take

f(t) = (cos t, sin t) for t ∈ [a, b] = [2
3
π, 3

2
π],

g(u) = (2 cosu, sinu) for u ∈ [c, d] = [1
2
π, 3

2
π],

COMPUTING THE HAUSDORFF DISTANCE 847

Table 4. Results for Example 4.

h(A,B)
M #I MaxSize MaxDist seconds
10 4 1.801e-001 0.90624262085435 0.0676
102 2 1.552e-002 0.91884096011899 0.1202
103 2 1.857e-003 0.92111336842335 0.1461
104 2 2.224e-004 0.92138430952460 0.1635
105 2 2.665e-005 0.92141675342013 0.1803
106 2 1.105e-006 0.92142098638664 0.2110
107 2 1.324e-007 0.92142114759182 0.2435
108 2 1.587e-008 0.92142116690665 0.2598
1010 2 2.278e-010 0.92142116949814 0.3034
1012 2 1.132e-012 0.92142116953570 0.3460
1014 2 1.621e-014 0.92142116953589 0.3990

h(B,A)
M #I MaxSize MaxDist seconds
10 4 1.591e-001 0.96637645204818 0.1422
102 14 1.960e-002 0.96811505246297 0.4644
103 38 2.446e-003 0.96811574434799 0.7140
104 144 1.528e-004 0.96811576879148 2.9292
105 406 1.911e-005 0.96811576962759 8.2115
106 1152 2.388e-006 0.96811576966203 24.0839
107 3248 2.985e-007 0.96811576966290 66.3821

so that A is an arc of the unit circle and B is the left half of the ellipse
x2/22+ y2 = 1. For h(A,B) we observe a fast, O(logM) running time, but for
h(B,A) the optimal point occurs at a stationary point for u 7→ d (g(u), A) so,

as with Example 4, the running time is O(
√
M).

Example 6. We let A consist of three parametric curves given by

f1(t) = (t+ 1, t2 − 5

4
) for t ∈ [a1, b1] = [0, 3

2
],

f2(t) = (− cos t+ 7

2
, 1 + sin t) for t ∈ [a2, b2] = [0, 5

6
π],

f3(t) = (t4 + 9

2
, et + 1

2
) for t ∈ [a3, b3] = [0, 3

2
],

and likewise define B by

g1(u) = (u+ 1, u2) for u ∈ [c1, d1] = [0, 1],

g2(u) = (4− 2 cosu, 1 + 3 sinu) for u ∈ [c2, d2] = [0, 5

6
π],

g3(u) = (u2 + 5.8, u3 + 2.5) for u ∈ [a3, b3] = [0, 3
2
].

Table 6 shows that the algorithm of Section 5 converges rapidly in this case.

848 IK-SUNG KIM AND WILLIAM MCLEAN

−2 −1.5 −1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t
−2 −1.5 −1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

Figure 4. Shown on the left is d
(

f(t), B
)

, and on the right,

d
(

g(u), A
)

for Example 4.

Example 7. In our final example, A and B are curves in R
3, parameterized

by the functions

f(t) = (cos t, sin t, t) for t ∈ [a, b] = [3
4
π, 5

4
π],

g(u) = (2 cosu, sinu, 2u) for u ∈ [c, d] = [1
2
π, 3

2
π];

see Figure 5. The results in Table 7 show that we again have fast convergence.

x

�2.0
�1.5�1.0�0.50.00.51.0

y

0.0
0.5

1.0
1.5

2.0
2.5

z

0

1

2

3

4

5

6

x

�2.0
�1.5�1.0�0.50.00.51.0

y

0.0
0.5

1.0
1.5

2.0
2.5

z

0

1

2

3

4

5

6

Figure 5. The sets A (solid line) and B (dashed line) for
Example 7.

COMPUTING THE HAUSDORFF DISTANCE 849

Table 5. Results for Example 5.

h(A,B)
M #I MaxSize MaxDist seconds
10 4 3.881e-002 0.811053984461385 0.0630
102 2 1.941e-002 0.813088499053888 0.0636
103 4 2.249e-003 0.816488847027757 0.0988
104 4 6.450e-005 0.816474874381915 0.1234
105 4 1.828e-005 0.816495972180698 0.1435
106 4 1.616e-006 0.816496452244338 0.1686
107 2 1.463e-007 0.816496519011455 0.1923
108 4 1.607e-008 0.816496578441697 0.2175
1010 2 2.512e-010 0.816496580849110 0.2439
1012 4 1.380e-012 0.816496580927693 0.3107
1014 4 2.398e-014 0.816496580927726 0.3700

h(B,A)
M #I MaxSize MaxDist seconds
10 6 1.822e-001 2.30824867811854 0.0792
102 14 2.253e-002 2.30934241002361 0.1950
103 34 2.799e-003 2.30940105480629 0.6603
104 148 1.749e-004 2.30940107413654 2.2248
105 428 2.186e-005 2.30940107671031 7.1056
106 1208 2.733e-006 2.30940107675840 19.7423
107 4844 1.708e-007 2.30940107675850 78.6975
108 13688 2.135e-008 2.30940107675850 225.7033

Table 6. Results for Example 6.

M #I MaxSize MaxDist seconds
10 4 4.682e-002 1.8762335102915 0.3394
102 6 1.038e-002 1.8762335102915 0.4430
103 8 1.297e-003 1.8825200121058 0.6742
104 2 8.106e-005 1.8832818217065 0.8402
105 4 1.255e-005 1.8832818217065 0.9404
106 6 7.845e-007 1.8832854731356 1.1248
108 4 1.327e-008 1.8832864769426 1.3403
1010 4 3.203e-011 1.8832864842719 1.6981
1012 14 1.274e-012 1.8832864842760 2.0254
1014 4 1.021e-014 1.8832864842770 2.5173

7. Conclusion

We have presented a new algorithm for computing the Hausdorff distance
between two sets of parametric curves in R

n. By employing a pruning tech-
nique, our method typically requires only O(logM) evaluations of the distance

850 IK-SUNG KIM AND WILLIAM MCLEAN

Table 7. Results for Example 7.

M #I MaxSize MaxDist seconds
10 4 9.817e-002 1.58493363710854 0.0663
102 4 1.227e-002 1.61399049107328 0.1092
103 4 1.534e-003 1.61765296105915 0.1750
104 4 9.587e-005 1.61814396044311 0.2323
105 4 1.198e-005 1.61817260562654 0.2846
106 4 1.498e-006 1.61817618630199 0.3414
108 4 1.170e-008 1.61817669383126 0.4532
1010 4 9.143e-011 1.61817669779633 0.5692
1012 4 1.429e-012 1.61817669782706 0.7010
1014 4 1.110e-014 1.61817669782755 0.8007

from a point to a curve, compared with O(M) such evaluations to achieve com-
parable accuracy in the direct method. When the optimal point occurs at a
stationary point of the distance function, the cost of our algorithm increases to
O(
√
M), but faster convergence means that we require only a moderate value

of M to attain acceptable accuracy, and the growth in the number of retained
subintervals provides a convenient stopping criterion.

References

[1] H. Alt, P. Braß, M. Godau, C. Knauer, and C.Wenk, Computing the Hausdorff distance of

geometric patterns and shapes, Discrete and computational geometry, 65–76, Algorithms
Combin., 25, Springer, Berlin, 2003.

[2] E. Belogay, C. Cabrelli, U. Molter, and R. Shankwiler, Calculating the Hausdorff distance

between curves, Inform. Process. Lett. 64 (1997), no. 1, 17–22.
[3] M. Bouts, Comparing images using the Hausdorff distance, unpublished manuscript,

2006.

[4] R. P. Brent, Algorithms for Minimization without Derivatives, Prentice–Hall, 1973.
[5] G. Rote, Computing the minimum Hausdorff distance between two point sets on a line

under translation, Inform. Process. Lett. 38 (1991), no. 3, 123–127.
[6] L. Scharf, Computing the Hausdorff distance between sets of curves, Thesis, Freie Uni-

versität, Berlin, 2003.

Ik-Sung Kim

Division of Data Information

Korea Maritime University

Busan 606-791, Korea

E-mail address: ikim@hhu.ac.kr

William McLean

School of Mathematics and Statistics

The University of New South Wales

Sydney 2052, Australia

E-mail address: w.mclean@unsw.edu.au

